

IN THE NAME OF GOD

6th International and 8th Iranian Congress of Endocrinology & Metabolism Updates

21st – 23rd May 2025 Isfahan, Iran

Isfahan, Iran

HYPOPITUITARISM

DR. MOZHGAN KARIMIFAR

ششمین همایش بین المللی و هشتمین همایش سراسری

تازه های غدد و متابولیسم

۳ اردیبهشت ۱۴۰۴، ۲ خرداد، اصفهان. هتل بزرگ عباسی

6th International & 8th Iranian Congress of Endocrinology & Metabolism Updates

21st-23rd May 2025, Isfahan, Iran

محورهای همایش

- دینیت و پردازش دینیت
- اختلالات لیپید، چاهش و سندروم متابولیک
- بیماریاتی قریوند
- اوتستنوروز و ایلر اختلالات کلامیم و فشر
- بیماریاتی غذه دهی کروی
- اختلالات کنیادها
- اختلالات همیوفیزی و سندروم لیپید و کریز

مجله ارسال خلاصه مقالات

۱۴۰۶ اردیبهشت ۱۴۰۶ تاریخ

www.ijerpi.org | 10

ice.wustl.ac.ir اینل جمار

הנִזְקָנָה בְּבִנְיָמִינָה

دیکشنری اسلامی

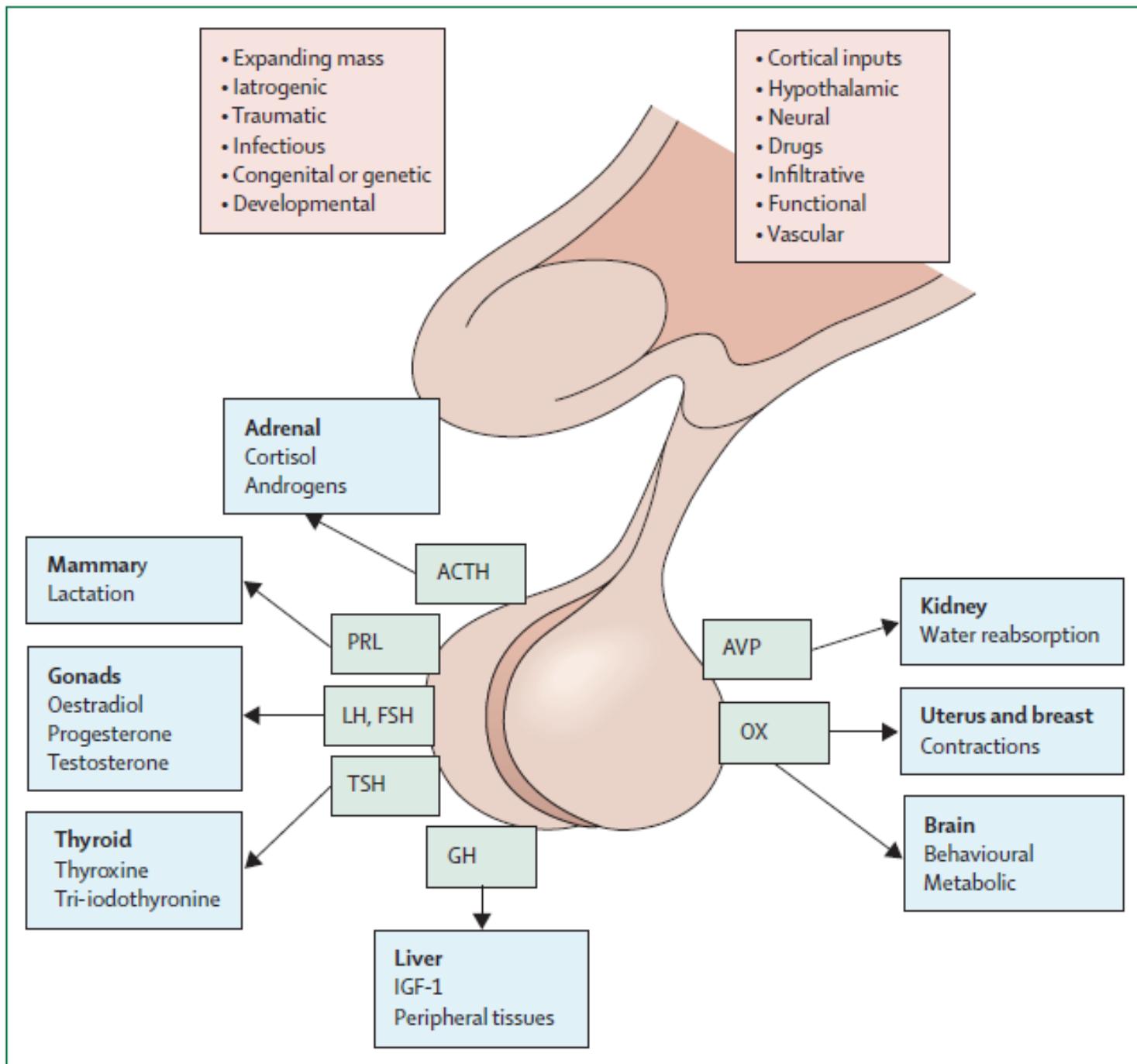
卷之三

www.english-test.net

دایری اسناد ایران معاصر

• 8 •

THE PRACTICAL USE OF THE BIBLE



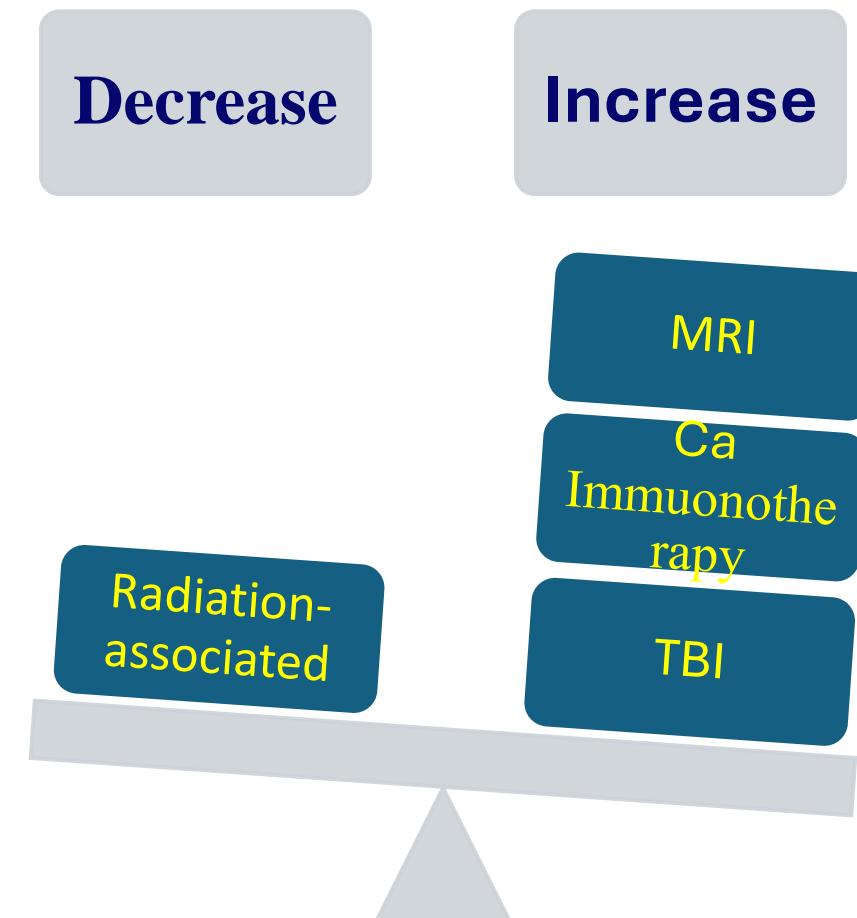
AGENDA

- **Definition of Hypopituitarism**
- **Epidemiology & Main cause of hypopituitarism**
- **Immune checkpoint inhibitors**
- **Traumatic brain injury**
- **Gene-editing therapies**

Introduction

- **Hypopituitarism**, defined as partial or complete deficiency of anterior or posterior pituitary hormones.
- Fleseriu M, Christ-Crain M, Langlois F, Gadelha M, Melmed S. Hypopituitarism. Lancet. 2024 Jun 15;403(10444):2632-2648. doi: 10.1016/S0140-6736(24)00342-8. Epub 2024 May 9. PMID: 38735295.

Fleseriu M, Christ-Crain M, Langlois F, Gadelha M, Melmed S. Hypopituitarism. Lancet. 2024 Jun 15;403(10444):2632-2648. doi: 10.1016/S0140-6736(24)00342-8. Epub 2024 May 9. PMID: 38735295.


Epidemiology of Hypopituitarism

- A Spanish population-based study reported a prevalence of approximately 45.5 cases of hypopituitarism per 100 000 adults, with similar rates between females and males, and an annual incidence of 4.21 per 100 000 adults.
- Congenital hypopituitarism incidence is estimated at one in 4000 to one in 10 000 livebirths per year.

- Fleseriu M, Christ-Crain M, Langlois F, Gadelha M, Melmed S. Hypopituitarism. Lancet. 2024 Jun 15;403(10444):2632-2648. doi: 10.1016/S0140-6736(24)00342-8. Epub 2024 May 9. PMID: 38735295.
- Iwama S, Kobayashi T, Arima H. Management, biomarkers and prognosis in people developing endocrinopathies associated with immune checkpoint inhibitors. Nat Rev Endocrinol. 2025 May;21(5):289-300. doi: 10.1038/s41574-024-01077-6. Epub 2025 Jan 9. PMID: 39779950.

Epidemiology

Hypothalamic obesity

AVP-D,
hypogonadism,
craniopharyngioma
GHD
Hypoadrenalism

History of brain
irradiation or
craniotomy

Mortality rates of Hypopituitarism

Hypopituitarism
> General
population

Younger age

F > M

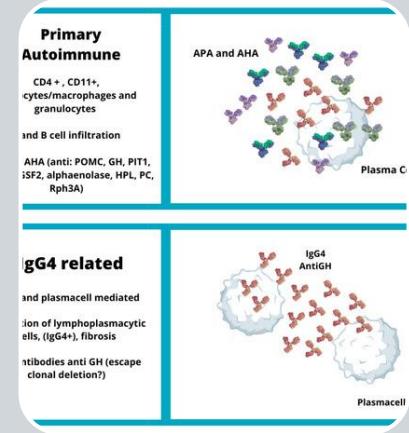
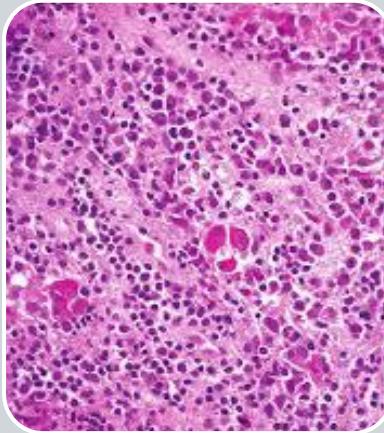
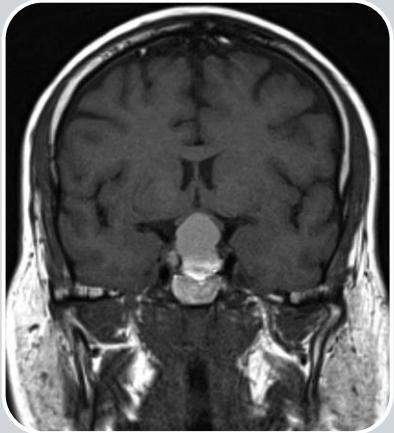
Cause	Underlying cause
Medication-induced or endogenous hormonal excess	Suppression of specific axis, possibly reversible with medication discontinuation
Functional	Reversible isolated or combined deficiency due to systemic disorder
Mass effect and treatment-related effects	Compressive sellar or suprasellar lesion; treatment to the sellar area, basal brain, or nasopharynx
Inflammatory	Hypophysitis or inflammatory process, or both, in the anterior or posterior pituitary, stalk, or hypothalamus
Infiltrative	Pituitary or stalk infiltration, or both, often systemic
Infectious or toxic	Mostly in immunosuppressed or endemic populations
Vascular	Infarction or haemorrhage
Traumatic	Mechanical or vascular injury to the sellar area
Developmental	Syndromic or non-syndromic genetic alterations in pituitary development
Other	Unknown
	High-dose glucocorticoid treatment (oral, injectable, inhaled, topical, or intranasal) or long-standing endogenous Cushing's syndrome; medications including opiates, drugs causing hyperprolactinaemia, androgens, thyroid hormones, somatostatin receptor ligands, intravenous dopamine, interferon, ribavirin, or other
	Acute or chronic severe illness, anorexia nervosa, extreme exercise, obesity or malnutrition, or pseudotumour cerebri
	Pituitary adenoma (functioning or non-functioning), pituitary cysts (Rathke, arachnoid, epidermoid, or dermoid), craniopharyngioma, germinoma, metastasis (breast, lung, or other), meningioma, glioma, ependymoma, or other; surgery and radiation therapy to the sellar area
	Lymphocytic, granulomatous, IgG4 related, peritumoural, secondary to immunotherapy (anti-CTLA-4, anti-PD-1, or anti-PD-L1), granulomatosis with polyangiitis, giant cell granuloma, secondary to other vasculitis or connective tissue disorders, xanthomatous, necrosis, or paraneoplastic syndromes (anti-POMC or anti-PIT1)
	Haemochromatosis, sarcoidosis, amyloidosis, or histiocytosis (Langerhans cell or Erdheim-Chester disease)
	COVID-19; tuberculosis; viral, bacterial, fungal, or parasitic infection; syphilis; AIDS; or snakebite venom
	Pituitary apoplexy, pituitary haemorrhage, Sheehan syndrome, cavernous carotid artery aneurysm, cavernous sinus thrombosis, or subarachnoid haemorrhage
	Head injury or contact sports (eg, boxing, kickboxing, or American football)
	Septo-optic dysplasia, absent pituitary gland, hypoplastic pituitary gland, empty sella, or stalk interruption (table 2; appendix p 2)
	Idiopathic

This is a non-exhaustive list of hypopituitarism causes. Genetic causes of hypopituitarism are discussed in table 2. CTLA-4=cytotoxic T-lymphocyte associated protein 4. PD-1=programmed death 1. PD-L1=programmed death ligand 1. PIT1=pituitary-specific transcription factor 1. POMC=pro-opiomelanocortin.

Table 1: Causes of hypopituitarism by category

Fleseriu M, Christ-Crain M, Langlois F, Gadelha M, Melmed S. Hypopituitarism. Lancet. 2024 Jun 15;403(10444):2632-2648. doi: 10.1016/S0140-6736(24)00342-8. Epub 2024 May 9.

PMID: 38735295.




Main cause of hypopituitarism in adults

Adenoma of pituitary

- 17% of all intracranial lesions in adults
- 3% of paediatric brain tumours

Prevalence of clinically apparent adenomas

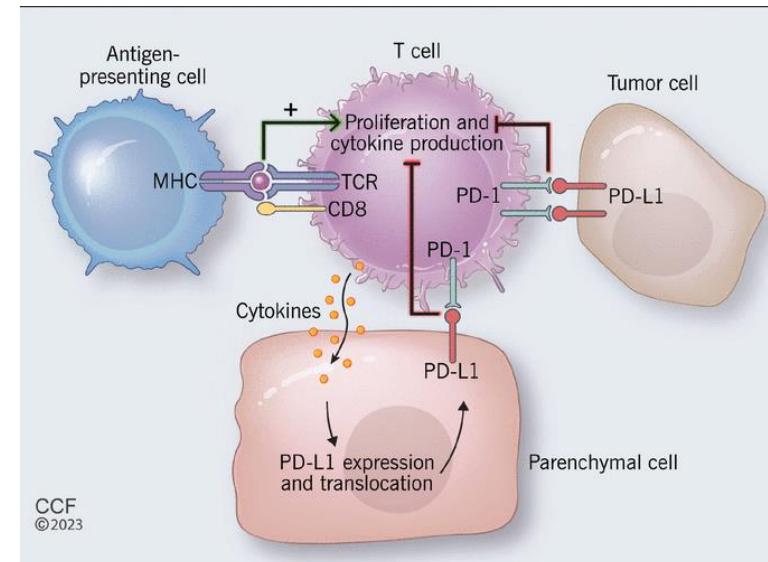
- Low
- MRI
- Anterior hypopituitarism can be seen in 34–89% of adults with compressive non-functioning pituitary adenomas

Pituitary Adenoma
Gonad(80%)
GH
TSH
ACTH
AVP-D
(extremely rare)

Radiotherapy
GH (45%)
Gonad (30%)
TSH (25%)
ACTH (22%)

Lymphocytic hypophysitis
ACTH (60-80%)
AVP-D (50%)
Thyroid and gonadal axes (30-60%)
GH (14-37%)

Pregnancy-related hypophysitis
late pregnancy or the postpartum period
lower AVP-D rate


IgG4-related hypophysitis
Panhypopituitarism(40%)

Pituitary metastases

- **AVP-D** is extremely rare in patients with pituitary adenomas, but it may be seen in as many as 50% at presentation in patients with pituitary metastases.
- Fleseriu M, Christ-Crain M, Langlois F, Gadelha M, Melmed S. Hypopituitarism. Lancet. 2024 Jun 15;403(10444):2632-2648. doi: 10.1016/S0140-6736(24)00342-8. Epub 2024 May 9. PMID: 38735295

Immune checkpoint inhibitors

- Diagnoses of hypophysitis have increased in the past decade with increased use of cancer immunotherapies, specifically CTLA-4, PD-1, and PD-L1 inhibitors.

Endocrinopathy associated ICI

Thyroid

Hypophysitis

Type 1 diabetes mellitus

Primary adrenal insufficiency

Hypoparathyroidism

Kotwal A, Kennedy R, Kikani N, Thosani S, Goldner W, Shariff A. Endocrinopathies Associated With Immune Checkpoint Inhibitor Use. Endocr Pract. 2024 Jun;30(6):584-591. doi: 10.1016/j.eprac.2024.03.023. Epub 2024 Mar 28. PMID: 38554775

Immune checkpoint inhibitors by mechanism

Drug mechanism	Drug name
Anti-PD-1	Nivolumab Pembrolizumab Cemiplimab Dostarlimab Retifanlimab Toripalimab Tislelizumab
Anti-PD-L1	Atezolizumab Avelumab Cosibelimab Durvalumab
Anti-CTLA-4	Ipilimumab Tremelimumab
Anti-LAG-3/anti-PD-1	Relatlimab and nivolumab

Epidemiology of Pituitary irAEs

CTLA-4 ICI as monotherapy or in combination with a PD-1 ICI (14%)

- PD-1/PD-L1 ICI monotherapy (1.5%)

Incidence of pituitary irAEs
anti-CTLA4 antibody (24%)

- anti-PD1 antibody (6%)

Another prospective study
anti-CTLA4 plus anti-PD1 antibodies (19%)

Pathophysiology of Pituitary irAEs

- Lymphocytic infiltration by T cells accompanied by macrophages and complement deposition
- T cell-mediated cytotoxicity and complement activation
- <https://doi.org/10.1038/s41574-024-01077-6>

Pathophysiology of Pituitary irAEs

Combined pituitary hormone deficiency

- Necrotic lesions
- Fibrosis

Isolated ACTH deficiency

- Necrotic lesions and fibrosis **are not** observed

Pathophysiology of ICI Hypophysitis

Type II
hypersensitivity
reaction

Human leukocyte
antigen (HLA)

Circulating
autoantibodies
against anterior
pituitary

Onset of pituitary irAEs

- The **shortest duration** from the initiation of ICI treatment to the onset of pituitary irAEs was **23 days**, while the *longest duration* was **523 days**.
- Iwama S, Kobayashi T, Arima H. Management, biomarkers and prognosis in people developing endocrinopathies associated with immune checkpoint inhibitors. *Nat Rev Endocrinol*. 2025 May;21(5):289-300. doi: 10.1038/s41574-024-01077-6. Epub 2025 Jan 9. PMID: 39779950.

Table 1
Features That Distinguish Immune Checkpoint Inhibitor-Associated Endocrinopathies From Other Immune Related Adverse Events

Features	Characteristics of ICI-associated endocrinopathies
Epidemiology	Higher frequency in cohort studies than in trials due to better detection and characterization.
Presentation	Non-specific and subtle clinical features highlight the role of clinical suspicion and biochemical screening.
High-dose glucocorticoids for management	Limited role, mostly reserved for unrelenting pituitary mass effects.
Change in ICI regimen	Usually not necessary for mild dysfunction; can be resumed after control of symptoms and stable hormone replacement.
Long-term management	Hormone deficiency is permanent in most cases, necessitating continuity of care and patient engagement.
Link with cancer outcomes	Survival advantage is strongest with ICI-thyroiditis and not different with other ICI-associated endocrinopathies.

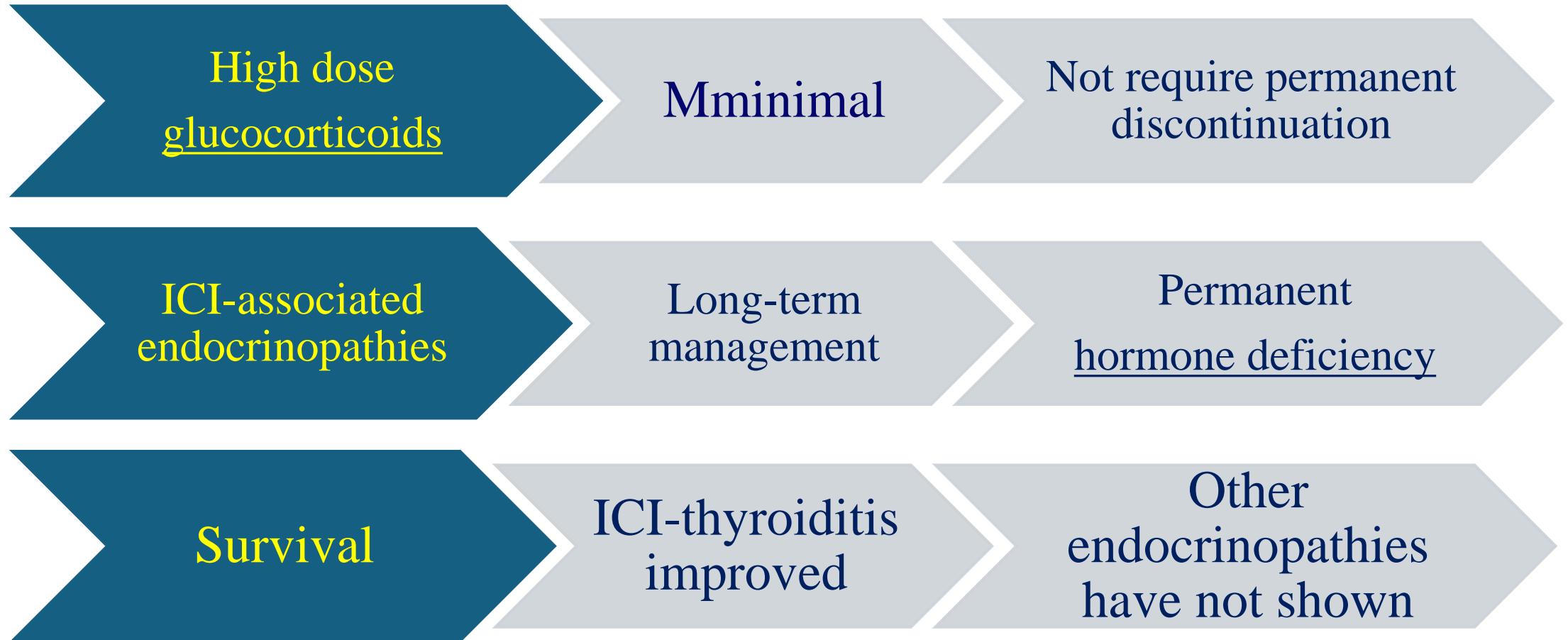

Abbreviation: ICI = immune checkpoint inhibitor.

Table 2
Differences in Immune Checkpoint Inhibitor-Hypophysitis Phenotype Based on Immune Checkpoint Inhibitor Regimens

Characteristics of pituitary dysfunction depending on immune checkpoint inhibitor regimen	CTLA-4 inhibitor monotherapy or combination with PD-1/PD-L1 inhibitor	PD-1/PD-L1 inhibitor monotherapy
Frequency	6-14%	0-1.5% (least with PD-L1)
Time to onset	6-12 wk	16-26 wk
Pituitary enlargement	More likely (approximately 70%)	Less likely (approximately 20%)
Mass effects	More likely	Less likely
Hypopituitarism	Multiple hormone deficiencies (ACTH and TSH most commonly)	Isolated ACTH deficiency

Abbreviations: ACTH = adrenocorticotropic hormone; CTLA-4 = cytotoxic T lymphocyte associated antigen-4; PD-1 = programmed death protein-1; PD-L1 = programmed death protein-ligand 1; TSH = thyroid stimulating hormone.

Hypophysitis

Presentation of ICI Hypophysitis

- The presentation depends on the extent of pituitary enlargement causing mass effects, with:
 - headache
 - diplopia
 - visual field deficits
 - and the occurrence of anterior hypopituitarism.
- The posterior pituitary is usually spared, making arginine vasopressin deficiency uncommon except in the setting of a large mass effect at a case-report level.

- Kotwal A, Kennedy R, Kikani N, Thosani S, Goldner W, Shariff A. Endocrinopathies Associated With Immune Checkpoint Inhibitor Use. *Endocr Pract.* 2024 Jun;30(6):584-591. doi: 10.1016/j.eprac.2024.03.023. Epub 2024 Mar 28. PMID: 38554775

Evaluation	PD-1/PD-L1 ICI	CTLA-4 combination ICI therapy
Asymptomatic screening	Not rec	in the first 6 months ¹
ESMO Guidelines	prior to treatment initiation	prior ² to treatment initiation
Evaluation includes	ACTH, AM cortisol, TSH, FT4, electrolytes. repeat testing in 3 months FSH,LH, estrogen or testosterone	prolactin and IGF-1 do not impact management, Their low levels may help when differentiating from glucocorticoid induced AI

ESMO Guidelines (European Society for Medical Oncology)

1-Kotwal A, Kennedy R, Kikani N, Thosani S, Goldner W, Shariff A. Endocrinopathies Associated With Immune Checkpoint Inhibitor Use. Endocr Pract. 2024 Jun;30(6):584-591. doi: 10.1016/j.eprac.2024.03.023. Epub 2024 Mar 28. PMID: 38554775

Iwama S, Kobayashi T, Arima H. Management, biomarkers and prognosis in people developing endocrinopathies associated with immune checkpoint inhibitors. Nat Rev Endocrinol. 2025 May;21(5):289-300. doi: 10.1038/s41574-024-01077-6. Epub 2025 Jan 9. PMID: 39779950.

Sickness vs Permanent Hypogonadism

- Measuring **FSH, LH, and estrogen or testosterone** in women or men, respectively, can be performed **3 months later** since initial reduction may be due to sickness, and replacement in the short-term is not crucial.

- Kotwal A, Kennedy R, Kikani N, Thosani S, Goldner W, Shariff A. Endocrinopathies Associated With Immune Checkpoint Inhibitor Use. *Endocr Pract.* 2024 Jun;30(6):584-591. doi: 10.1016/j.eprac.2024.03.023. Epub 2024 Mar 28. PMID: 38554775

Pituitary MRI

- Especially if:
 - uncertain diagnosis
 - mass effects
 - concern for metastatic disease
- ICI-hypophysitis is confirmed if the patient has evidence of secondary hypothyroidism or AI and/or MRI findings, noting that MRI pituitary enlargement is usually absent after PD-1/PD-L1 ICI

• Kotwal A, Kennedy R, Kikani N, Thosani S, Goldner W, Shariff A. Endocrinopathies Associated With Immune Checkpoint Inhibitor Use. *Endocr Pract.* 2024 Jun;30(6):584-591. doi: 10.1016/j.eprac.2024.03.023. Epub 2024 Mar 28. PMID: 38554775

Dosage of steroids for the treatment of hypopituitarism

Adrenal crisis

- High-dose hydrocortisone

- 50–100 mg every 6–8 hours

- Alert cards or bracelets

Severe pituitary enlargement

- accompanied by headaches and/or visual field disturbances

- prednisolone

- 0.5–1.0 mg/kg–daily

However, previous studies have reported that high-dose steroids were ineffective at restoring pituitary function and were associated with shortened survival compared with low-dose steroids

<https://doi.org/10.1038/s41574-024-01077-6>

Management

- Hydrocortisone/ prednisone
- Hydrocortisone replacement must be started before initiating levothyroxine replacement
- Medicalert identifier
- Gonadal hormone replacement (persistent and confirmed)
- GH(Not Recommended in setting of active malignancy)

High-dose
glucocorticoids

- worse oncologic outcomes

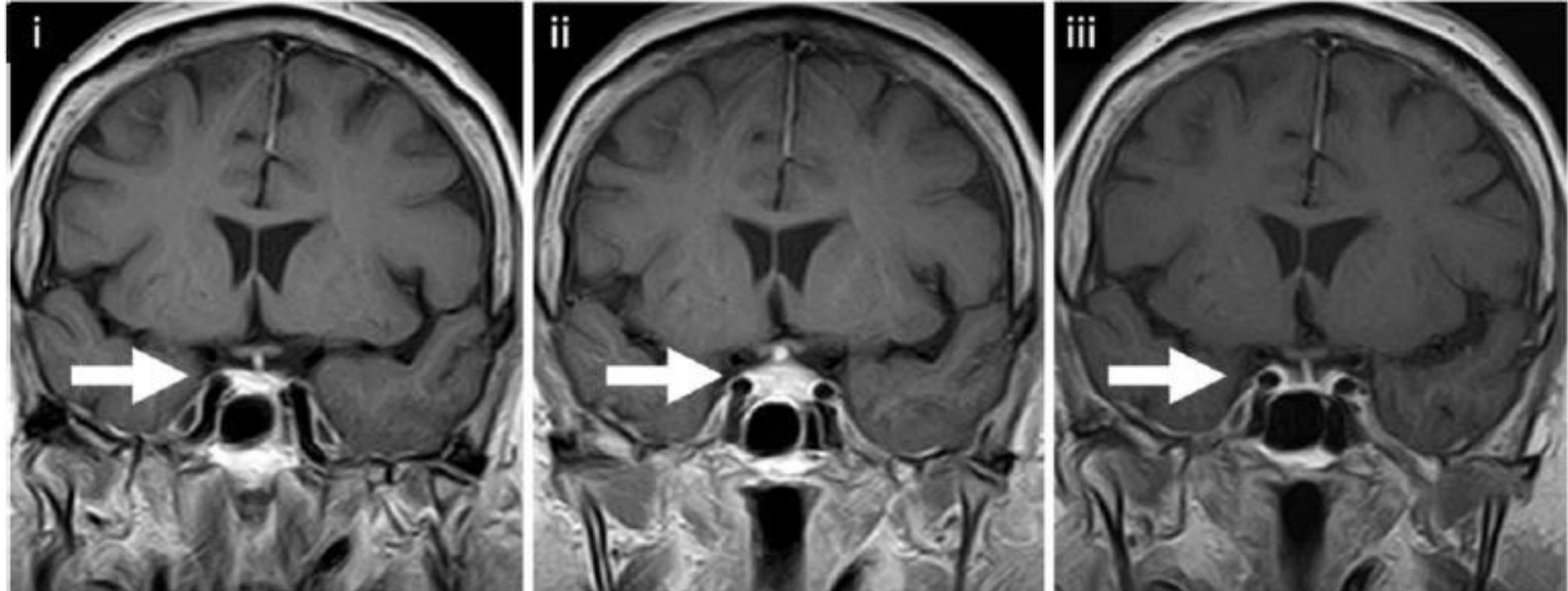
Prednisone 0.8-1
mg/kg/d

- unrelenting mass effects given for the shortest duration necessary (3-4 weeks)

Pituitary enlargement

- Resolves within 12 weeks

Persistence


- Alternative etiologies
- metastasis to pituitary gland

Recovery

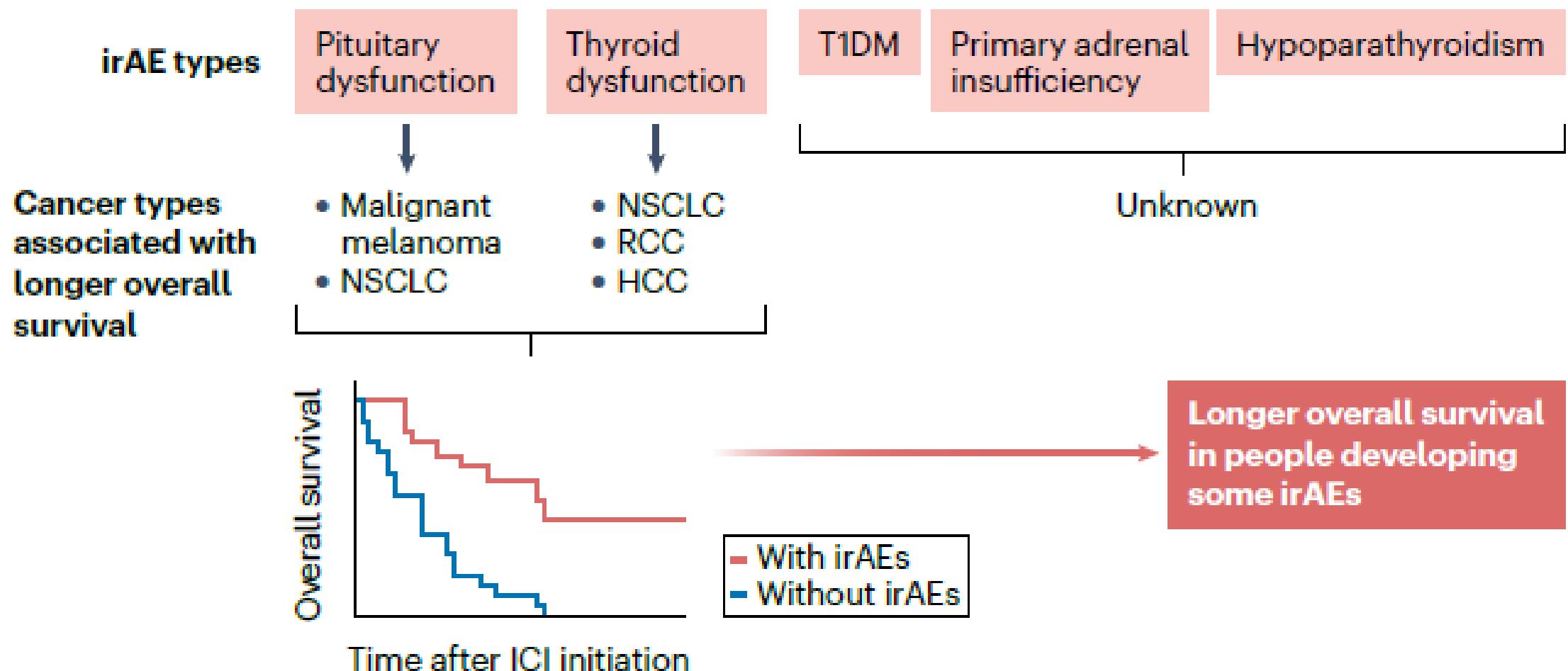
- Recovery of secondary hypothyroidism and hypogonadism in up to 50%.
- Secondary AI is permanent in most cases recovery of ACTH deficiency in a young male

Recovery of hypopituitarism

- Hence, recovery of hypopituitarism could be tested **every 3 to 6 months** for the **first year** and **every 6 to 12 months thereafter**, especially for the first **2 years** or for those where initial diagnosis was uncertain due to exogenous glucocorticoids
- Kotwal A, Kennedy R, Kikani N, Thosani S, Goldner W, Shariff A. Endocrinopathies Associated With Immune Checkpoint Inhibitor Use. *Endocr Pract.* 2024 Jun;30(6):584-591. doi: 10.1016/j.eprac.2024.03.023. Epub 2024 Mar 28. PMID: 38554775

Representative imaging changes seen with immune checkpoint inhibitor–induced hypophysitis. (A) Representative changes in the MRI appearance in a subset of 6 subjects within this cohort relative to CPI initiation and hypophysitis diagnosis. The clinical course in the subject highlighted in (B) is outlined by the dashed line. (B) Serial coronal T1 post-contrast MRIs demonstrate a normal appearing pituitary gland and infundibulum (i), followed by an enlarged pituitary gland and thickened infundibulum (ii), and ultimately a partially empty sella (iii).

Quandt Z, Kim S, Villanueva-Meyer J, Coupe C, Young A, Kang JH, Yazdany J, Schmajuk G, Rush S, Ziv E, Perdigoto AL, Herold K, Lechner MG, Su MA, Tyrrell JB, Bluestone J, Anderson M, Masharani U. Spectrum of Clinical Presentations, Imaging Findings, and HLA Types in Immune Checkpoint Inhibitor-Induced Hypophysitis. *J Endocr Soc.* 2023 Feb 6;7(4):bvad012. doi: 10.1210/jendso/bvad012. PMID: 36860908; PMCID: PMC9969737.


Which Patients treated with ICI are at risk for endocrine irAEs ?

- **Anti-pituitary antibodies** and thyroid **autoantibodies** have been identified as potential biomarkers for the development of pituitary and thyroid irAEs, respectively.

- Iwama S, Kobayashi T, Arima H. Management, biomarkers and prognosis in people developing endocrinopathies associated with immune checkpoint inhibitors. *Nat Rev Endocrinol.* 2025 May;21(5):289-300. doi: 10.1038/s41574-024-01077-6. Epub 2025 Jan 9. PMID: 39779950.

Prolonged overall survival, after ICI treatment

- However, pituitary and thyroid irAEs have been reported to be associated with favourable clinical outcomes, including prolonged overall survival, after ICI treatment in certain types of cancer after appropriate therapy has been given for the endocrine irAE.
- Iwama S, Kobayashi T, Arima H. Management, biomarkers and prognosis in people developing endocrinopathies associated with immune checkpoint inhibitors. *Nat Rev Endocrinol.* 2025 May;21(5):289-300. doi: 10.1038/s41574-024-01077-6. Epub 2025 Jan 9. PMID: 39779950.

Traumatic brain injury (TBI)

- In **traumatic brain injury (TBI)**, **advanced neuroimaging** (MRI) and **machine learning algorithms** now predict pituitary damage with >90% accuracy, enabling preemptive hormone screening.
- Longitudinal data reveal **GH deficiency** persists in 30% of TBI survivors at 5-year follow-up, correlating with poor neurocognitive recovery, spurring advocacy for mandatory endocrine monitoring in TBI guidelines.

- Badjatia N, Podell J, Felix RB, Chen LK, Dalton K, Wang TI, Yang S, Hu P. Machine Learning Approaches to Prognostication in Traumatic Brain Injury. *Curr Neurol Neurosci Rep.* 2025 Feb 19;25(1):19. doi: 10.1007/s11910-025-01405-x. PMID: 39969697.

Gene-editing therapies

- Gene-editing therapies** show promise in preclinical models: CRISPR-Cas9 targeting *PROP1* mutations restored pituitary function in congenital cases . Meanwhile, **stem cell-derived pituitary organoids** are entering Phase I trials, aiming to regenerate hormone-secreting cells.
- Garcia, M., et al. (2025). *Personalized Hormone Replacement via CRISPR-Edited Stem Cells*. *The Lancet Diabetes & Endocrinology*, 13(5), 345-357. DOI:10.1016/S2213-8587(25)00012-9

Personalized hormone replacement

- Clinically, **personalized hormone replacement** is gaining traction.
- For adrenal insufficiency, dual-release hydrocortisone formulations mimic physiological cortisol rhythms, reducing cardiovascular risks.

- Fleseriu M, Christ-Crain M, Langlois F, Gadelha M, Melmed S. Hypopituitarism. Lancet. 2024 Jun 15;403(10444):2632-2648. doi: 10.1016/S0140-6736(24)00342-8. Epub 2024 May 9. PMID: 38735295.

Oxytocin deficiency

- Oxytocin:
- increased **pro-social** and **empathic behaviour** and **decreased anxiety** typical of methylenedioxymethamphetamine (MDMA)
- Although oxytocin deficiency seems to be a new disease entity shown in patients with AVP-D, the role of oxytocin substitution therapy requires further investigation.

- Fleseriu M, Christ-Crain M, Langlois F, Gadelha M, Melmed S. Hypopituitarism. Lancet. 2024 Jun 15;403(10444):2632-2648. doi: 10.1016/S0140-6736(24)00342-8. Epub 2024 May 9. PMID: 38735295

Gut-pituitary axis

- Finally, the **“gut-pituitary axis”** has emerged as a research frontier. Dysbiosis-linked inflammation exacerbates pituitary dysfunction in animal models, prompting trials of probiotics and fecal transplants to augment traditional therapies.
- O'Riordan KJ, Moloney GM, Keane L, Clarke G, Cryan JF. The gut microbiota-immune-brain axis: Therapeutic implications. *Cell Rep Med*. 2025 Mar 18;6(3):101982. doi: 10.1016/j.xcrm.2025.101982. Epub 2025 Mar 6. PMID: 40054458; PMCID: PMC11970326.

Take home message

- Hypopituitarism in adults most frequently occurs in the setting of a pituitary adenoma and treatments affecting the pituitary or hypothalamus.
- Diagnoses of hypophysitis have increased in the past decade with increased use of cancer immunotherapies, specifically CTLA-4, PD-1, and PD-L1 inhibitors.
- Before ICI treatment: Baseline assessment for serum levels of cortisol, thyroid-stimulating hormone (TSH) and free thyroxine (fT4).
- Personalized hormone replacement
- Gene-editing therapies: CRISPR-Cas9 targeting ***PROP1*** mutations restored pituitary function in congenital cases
- Oxytocin: increased pro-social and empathic behaviour

THANKS FOR YOUR
ATTENTION