LIPID PROFILE OF CHILDREN WITH TYPE I DIABETES COMPARED TO CONTROLS
S Faghih Imani MD(1), M Hashemipour MD(2), R Kelishadi MD(3)

Abstract
INTRODUCTION: Diabetes mellitus is the most common endocrine-metabolic disease in children and is associated with cardiovascular disease risk factors. This study aimed to compare the lipid profile of diabetic children with controls.
METHODS: In this case-control study, the lipid profiles and lipoprotein levels of 45 children aged 2-18 years with established diabetes were compared with those of 45 healthy controls.
RESULTS: Mean apolipoprotein A and triglyceride levels in the cases were higher in than in controls, while mean apolipoprotein B and lipoprotein a, as well as total, LDL and HDL cholesterol were higher in controls.
CONCLUSIONS: Better apolipoprotein levels and lipid profiles in diabetic children as compared to controls were likely due to tight nutritional control in diabetic patients under study.

Key Words: Diabetes mellitus, lipid profile, apolipoproteins, children.
ARYA Journal 2006; 2(1): 36-38

Introduction
Diabetes mellitus (DM) is the most common endocrine-metabolic disease in children and adolescents. In its insulin-dependent type (IDDM), severe decreases in insulin levels cause various short- and long-term complications, namely increased risk of dyslipidemia and atherosclerosis. Poor glycemic control in IDDM can lead to decreased HDL-C (high-density lipoprotein cholesterol) and increased LDL-C (low-density lipoprotein cholesterol) and triglyceride (TG) levels.3 Coronary heart disease (CHD) occurs earlier and more frequently in diabetics than in non-diabetics.3,4 Abnormal lipid profile and lipoprotein oxidation (especially LDL-C) are more common in diabetic patients and are aggravated with poor glycemic control. LDL oxidation causes cytotoxic reactions and increases the risk of atherogenesis. Some studies suggest that abnormal lipid profile is also involved in the development of microvascular complications.5,6 HDL-C is produced in the liver and intestines from phospholipids and apolipoproteins. Cholesterol exits the cells via HDL-C.7 Lipoprotein-a (Lpa) is a type of LDL-C which interferes with fibrinolysis, in turn causing disorders of plasminogen activity and fibrinolysis.8

Considering the probable disorders of lipid profile and aggravation of the atherosclerotic process in high-risk patients, we conducted this study to assess the lipid profile of children and adolescents with IDDM in our community and compare them with controls.

Materials and methods
In this case-control study, known cases of IDDM aged 2-18 years, were selected from among patients referred to Isfahan Endocrinology and Metabolism Research Center as the case group. Age- and sex-matched controls were selected from among healthy children of families living in the same neighborhood as the case group.
Children with hypothyroidism, cholestatic hepatitis, familial hypercholesterolemia, nephrotic syndrome, chronic renal failure, and those receiving medications like thiazides, betablockers, oral estrogen and/or clozapine were excluded from the study. Before inclusion in the study, DM was ruled out in the control group by asking questions about the clinical signs of diabetes such as polyuria, polydipsia and recent weight loss; laboratory tests also confirmed the absence of DM in the control group.

(1) Susan Faghih Imani, MD
(2) Mahin Hashemipour MD, Associate Professor of Pediatrics, Isfahan Metabolism and Endocrinology Research Center, email address: hashemipour@med.mui.ac.ir
(3) Roya Kelishadi MD, Associate Professor, Preventive Pediatric Cardiology Department, Isfahan Cardiovascular Research Center, PO Box: 81465-1148, email address: kelishadi@med.mui.ac.ir

Corresponding author: Mahin Hashemipour
Date of submission: June 26, 2006
Date of acceptance: July 30, 2006
In both groups, venous blood samples were obtained after 12 hours in fasting state. Serum cholesterol, triglyceride, LDL-C, HDL-C, Apolipoprotein B100 (ApoB100), Apolipoprotein A1 (ApoA1) and Lpa were analyzed at Isfahan Cardiovascular Research Center and were compared between the case and control groups. The collected data were analyzed using SPSS V13/Win and the means of variables were compared with Student’s t-test. The frequency of lipid disorders in the case and control groups was compared with chi square test.

Results

The study population consisted of 45 known cases of IDDM aged 2 to 18 years, and 41 healthy controls. The means of ApoA and triglyceride in the case group were higher than controls, but the means of ApoB, Lpa, cholesterol, LDL-C and HDL-C in the control group were higher than cases (Table 1).

Table 2 shows the frequency of low HDL-C, high LDL-C, high total cholesterol and high triglycerides in the two groups. It shows that the frequency of low HDL-C and high TG was higher in the case group and the frequency of high TG was higher in controls. Dyslipidemia was more prevalent in diabetic children than in controls (52.9% vs. 47.1%, respectively, P<0.0001).

Discussion

We found significant difference between ApoB, Lpa, HDL-C and total cholesterol levels between the case and control groups. Surprisingly, mean levels in diabetic children were lower than in controls. These findings are contrary to many previous studies. The study of Erciyas et al. showed that ApoA and ApoB, as well as total and LDL cholesterol in diabetic children were significantly higher than in controls.9 The case-control study of Bustos et al. showed that diabetic children had significantly higher Lpa-1 levels than controls.10 In our study, ApoB in the control group was significantly higher than in diabetic children. Consistent with the study of Ohta et al.,12 plasma levels of HDL-C in diabetic children in our study were significantly higher than controls. Our observation of lower mean levels of some serum lipids was apparently due to tight nutritional control in the diabetic group.
References
