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ABSTRACT
Introduction: The current study aimed to investigate whether the pattern of changes in lipid 
profile and fasting blood sugar (FBS) can predict the future risk of type 2 diabetes mellitus 
(T2DM) incidence in prediabetic people.
Methods: In a prospective cohort study, 1228 prediabetic patients were followed from 2003 
until 2019 and longitudinal data on lipid indices (CHOL: cholesterol; HDL: high-density lipo-
protein; LDL: low-density lipoprotein; TG: triglyceride) and fasting blood sugar (FBS) were 
recorded. The latent class growth model (LCGM) was used to estimate growth trajectories 
and to determine distinct subgroups (latent class) with a similar trajectory for lipid profile and 
FBS over time. The incidence of T2DM in extracted latent classes was compared.
Results: Finally, 946 people with complete data were included in statistical analysis. Two latent 
classes were identified based on the change in FBS including high-risk and low-risk classes 
(class size: 5.2% vs. 94.8%) with T2DM incidence rates 100% and 35.9%, respectively (P < 0.001). 
Two distinct subgroups were identified based on changes in lipid profile. Latent classes with 
abnormal TG, CHOL, HDL, and LDL included 18.8%, 21.8%, 38.8%, and 24% of study partici-
pants, respectively. The incidence rates of T2DM and remaining prediabetic in abnormal TG 
latent class were 57.2% and 30.8%, and in abnormal HDL latent class were 41.5% and 31.7% 
were significantly different from normal latent classes (P < 0.001). While in the extracted latent 
classes based on CHOL and LDL the incidence rates were not statistically significant differences 
(P > 0.05).
Conclusions: We identified two subgroups with high and low risk of future T2DM based on the 
changes in FBS and lipid profile by applying LCGM. The incidence of T2DM in extracted latent 
classes was significantly different. LCGM is a reliable approach for predicting the risk of T2DM 
incidence based on trajectories of risk factors.
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1. Introduction

Type 2 diabetes mellitus (T2DM) was the seventh 
leading cause of death in 2016 and caused 1.6 million 
deaths in 2016. Approximately half of the deaths are 
attributed to T2DM, particularly in low- and middle- 
income countries, occur before age 70 [1]. Various risk 
factors play key role in the development of T2DM like 
genetic factors, unhealthy lifestyle, and physiological 
disturbances (e.g. elevated serum lipids or free fatty 
acids). The onset of T2DM can be delayed through 
a healthy lifestyle or treatment of complications.

Dyslipidemia is one of the main comorbidities in 
patients with diabetes whilst it has been estimated that 
79% and 90% of diabetic patients respectively in India 
and Jordan had abnormalities at least in one of the 
serum lipids [2,3]. Dyslipidemia is also overt in 

metabolic syndrome which suggests dyslipidemia 
might be more correlated with insulin resistance 
rather than hyperglycemia [4]. Cumulative evidence 
indicates that dyslipidemia might not only be the 
consequence of insulin resistance but also the cause 
of it [5]. Increased levels of triglyceride are associated 
with increased levels of free fatty acids which impair β- 
cell function and induce insulin resistance [6–9].

The main feature of diabetic dyslipidemia is hyper-
triglyceridemia, decreased HDL-C and elevated levels 
of small dense LDL-C. Previous studies have evaluated 
the association of lipid levels with the future T2DM 
risk in various populations and with different statisti-
cal modeling approaches [10–12]. However, it is not 
clear whether the pattern of changes in serum lipids 
and FBS over time can predict the risk of diabetes 
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development. Therefore, in the current prospective 
cohort study, we used the latent class growth model 
(LCGM) to explore trajectories of blood lipids and 
fasting blood sugar in prediabetic subjects who are 
first degree relatives of T2DM patients over 16 years 
of follow-up and to classify these people into similar 
latent subpopulations (latent class) to determine 
which identified latent class based on the patterns of 
changes in aforementioned variables can be a better 
predictor for the onset of T2DM in future. LCGM can 
be useful for identifying individuals with similar pat-
tern of changes based on studied characteristics over 
the time horizon and in line with its exploratory pur-
poses helps to extract uncover hidden trajectories 
within the population.

2. Methods

2.1. Study design and subjects

Data from prediabetic participants of the Isfahan 
Diabetes Prevention Study (IDPS), a prospective cohort 
study, were used for the current secondary analysis. 
Details about the IDPS have been described elsewhere 
[8,9]. Briefly, the IDPS is an ongoing prospective cohort 
study established in 2003 to explore the role of lifestyle 
factors in the development of prediabetes and T2DM in 
future among first degree relative of T2DM patients. 
A total of 3483 participants, aged 30–70 years, were 
recruited from among the first-degree relatives of patients 
with T2DM who attended the clinics of Isfahan 
Endocrine and Metabolism Research Center, Isfahan, 
Iran and signed the informed consent form. The study 
was carried out in accordance with the Helsinki 
Declaration Principles. After excluding those either with 
normal blood sugar test or with T2DM, 1228 prediabetics 
cases remained to be included in the current secondary 
study and among them 946 people who had data on final 
status in terms of being normal or progression to T2DM 
and remaining prediabetes, were included in data analy-
sis. Prediabetes is a condition in which serum glucose 
levels are higher than the normal threshold but not as 
higher as the threshold defined for diabetes. According to 
the American Diabetes Association (ADA) definition, 
prediabetes was determined using the following criteria: 
100 ≤ FBS < 126 mg/dL or HbA1c (Hemoglobin A1c) ≥ 
5.7–6.4% or 140 ≤ 2 h-OGTT (2- hour oral glucose 
tolerance test) < 200 mg/dL [13].

2.2. Assessment of lipid profile and fasting blood 
sugar

To measure serum lipids including triglyceride (TG), 
total cholesterol (TC), HDL: high-density lipoprotein; 
LDL: low-density lipoprotein, and fasting blood sugar 
(FBS), a 10-h overnight fasting blood sample was drawn 
from each participant at baseline (2003) and repeated 

every year over the period of follow-up. Enzymatic 
colorimetric method (Pars Azmoon, Tehran, Iran) 
adapted to a Selectra-2 auto-analyzer (Vital Scientific, 
Spankeren, The Netherlands) was used to determine 
serum concentrations of TG, TC, HDL, LDL, and FBS. 
When serum TG levels were < 400 mg/dL, LDL-C levels 
were calculated using Friedewald formula [14]; other-
wise, it was measured directly. HbA1c levels were deter-
mined in the whole blood sample using the pink reagent 
kit on a DS5 analyzer. Abnormalities in lipid profile 
were defined according to the definition of the National 
Cholesterol Education Program (NCEP) expert panel’s 
criteria. Accordingly, hypertriglyceridemia, hypercho-
lesterolemia, elevated LDL-C and low HDL-C were 
considered as TG>150 mg/dL, TC>200 mg/dL, 
LDL>130 mg/dL, and HDL<40 in men and <50 mg/ 
dL in women, respectively [15].

2.3. Other variables

Baseline examination to collect data about demographic, 
socioeconomic, and lifestyle factors were performed 
using a face-to-face interview by trained staff. 
Anthropometric and biochemical variables were mea-
sured using standard protocols. Bodyweight was mea-
sured to the nearest 0.1 kg and height was measured to 
the nearest 0.5 cm using a wall-fixed stadiometer while 
participants were barefoot and shoulders were in the 
normal position. All measurements were performed by 
trained examiners at baseline. Waist circumference (WC) 
was measured to the nearest 0.5 cm using a metal tape 
measure at the narrowest level between the lowest rib and 
iliac crest [16]. Body mass index (BMI) was calculated by 
dividing body weight in kg by height in m2.

2.4. Statistical analysis

Continuous and categorical basic characteristics of the 
subjects were presented as mean± standard deviation 
(SD) and percentage and were compared between 
study groups using an analysis of variance (ANOVA) 
and Bonferroni post hoc test for pairwise compres-
sions when ANOVA was statistically significant and 
Chi-squared tests, respectively. To provide a repeated 
measures data structure for using in our statistical 
modeling approach, i.e. latent class growth model 
(LCGM) three measurements including data at the 
beginning of cohort, the average measurements during 
follow up and the last measurement from each study 
participants was used. To evaluate the pattern of 
changes in fasting blood sugar and blood lipids (sepa-
rately) over time, the LCGM was applied [17].

The LCGM is a semiparametric model in the fra-
mework of the latent variables models that is used to 
analyze longitudinal data. Latent class growth model 
a multivariate application of structural equation 
model that examines how characteristics (outcome 
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variable) of subjects change over time. In LCGM 
repeated measurement of observed variables are used 
as indicators of latent variables that represent different 
aspects of subjects’ change. LCGM attempts to model 
the heterogeneity evident in the population by identi-
fying latent subgroups (i.e. classes), whereby subjects 
in each class demonstrate homogeneity (e.g. share 
certain characteristics or similar growth patterns). 
Therefore, all individual trajectories within each class 
are homogeneous and in different classes are 
heterogeneous.

The first step in the process of LCGM is the finding of 
the class number. Class enumeration allows researchers 
to determine the number of latent subgroups needed to 
best capture the heterogeneity evident in the population. 
It is recommended that the number of classes to be 
determined before adding any predictors to the model. 
The process begins by fitting a single class (i.e. uncondi-
tional) model and then adding classes to the model, 
examining fit statistics to determine whether the addi-
tional class improve the model fit or not. Fit statistics 
commonly used for latent class growth modeling include 
the Bayesian information criterion (BIC), Akaike infor-
mation criterion (AIC), classification error rate, and 
entropy; a model has the best fit to data when the afore-
mentioned indices are in the their lowest and the last one 
in its highest value [18]. We fitted LGCM with one to four 
classes and finalized the number of classes by considering 
the optimal values of model fitting indices and interpret-
ability of extracted latent classes. After the number of 
classes was determined, the covariates, including age, 
gender, physical activity, smoking habit, and educational 
status were added to the model as predictors of class 
membership.

The LCGM in the current study was used to 
identify latent classes from studied subjects based 
on trajectories of blood lipids and FBS (or classify 
subjects with similar trajectories). Each extracted 
latent class was interpreted based on mean values 
of serum lipids and FBS. A typical extracted latent 
class has been interpreted as high risk group when 
the mean values of TG, CHOL, LDL, FBS was high 
and HDL was low otherwise it was interpreted as 
low risk for future incidence of T2DM.Finally, the 
final status of each study subject at the end of 
cohort or last visit, i.e. diabetic, prediabetic, or 
normal was evaluated in each identified latent 
class (latent subpopulations) for examining the 
future risk. Data analysis was done by R free sta-
tistical software version 3.6.3.

3. Results

The study population consisted of 696 (73.6%) 
females and remaining males with a mean age ±SD 
of 44 ± 6.86 years. According to the final status of 
study participants (Normal, prediabetes, and type 2 

diabetes), general characteristics of participants as 
well as the mean concentrations of biochemical mar-
kers at the beginning of the study (2003) and follow- 
up assessments (2003, 2019) are shown in Table 1 
[10]. In comparison with individuals who remained 
prediabetes or progressed to T2DM at the end of the 
study, those who did not develop were younger and 
male however, in terms of other demographic and 
lifestyle variables, no significant difference was 
observed. Regarding biochemical variables, FBS, 
TG, CHOL, and LDL-C, in all three assessments 
(except for CHOL at time 1 and LDL-C at time 2), 
were significantly higher while HDL-C was lower in 
people with final status of diabetes in comparison 
with those who were normal. More details about the 
comparisons of Table 2 depicts the LCGM model fit 
results. According to the relative goodness-of-fit 
measures, the values of both AIC and BIC for FBS 
and serum lipids were descending for the fitted mod-
els from the two-class to the four-class model. The 
error of classification was the minimum for the two- 
class model for all five study variables. Accordingly, 
the two-class model for FBS and lipid profile was the 
best identified fitted one.

Table 3 and Figure 1 represent two identified latent 
classes in terms of mean trajectories of serum levels of 
FBS and lipid profile, the class size and the rate of being 
affected by T2DM, remaining prediabetes, and return to 
normal glucose tolerance. In class 1 (low-risk group), in 
all three time points, individuals had lower serum con-
centrations of FBS and TG, but higher serum levels of 
HDL-C compared with those who are in class 2 (high-risk 
group), accordingly the people in class 1 compared to 
class 2, had a lower risk for affecting by diabetes in future. 
Moreover, despite a considerable increase in the serum 
FBS of individuals in class 2 during the study follow up 
period, it just slightly changed in individuals who were 
classified in class 1. However, mean serum TC and LDL- 
C concentrations were higher in class 1 compared to class 
2. In addition, compared with class 2, class 1 had a greater 
size for all 5 variables ranged from 61.19% for HDL-C to 
94.84% for FBS. As shown in Table 3, in extracted class 2 
(high risk class) based on FBS, TG, and HDL, 100%, 
57.2%, and 41.5% of individuals, respectively, progressed 
to T2DM after 16 years of follow-up whereas the corre-
sponding values for people in class 1 were 35.9%, 35.2%, 
and 35.1%, respectively (P < 0.001). The rate of remaining 
prediabetes at the end of follow-up, in extracted latent 
classes based on FBS, TG, and HDL-C, was 37.9%, 37.0%, 
and 40.2% in class 1, respectively compared with 0.0%, 
30.8%, and 31.7% of participants in class 2 (P < 0.001). 
The distribution of final status of people in terms of 
progress to diabetes, remaining prediabetes, and return 
to normal glucose tolerance in identified latent classes 
based on trajectories of FBS, TG and HDL were signifi-
cantly different in which the rate of progression to dia-
betes was significantly higher in high-risk class (class 2) in 

54 A. FEIZI ET AL.



comparison with class 1(P < 0.001), while no significant 
difference was observed between extracted classes based 
on Cholesterol and LDL (P > 0.05).

4. Discussion

The present study primarily aimed to determine the 
longitudinal association between the pattern of 
changes in FBS and lipid profile and the onset of 
T2DM in the prediabetic people who are first-degree 

relatives of family of patients with T2DM participated 
in the IDPS. During a follow-up of 16 years, we recog-
nized that a two-class model is a best-fitted model 
based on the changes in lipid indices and FBS. In the 
examination of these classes concerning the develop-
ment of T2DM, we identified a significant higher 
T2DM incidence for class 2 (consisted of people with 
higher mean of FBS, TG, and lower mean HDL) 
whereas we did not detect a significant difference 
between constructed classes based on TC and LDL-C 
in terms of risk of T2DM development.

Table 1. Basic demographic and clinical characteristics of study participants at the beginning of cohort across different categories 
of final status at the end of follow-up1.

Variables
Normal 

(n = 204) Prediabetic (n = 403) Diabetic (n = 339)
Total 

(n = 946) P value2

Age (years) 42.97 ± 6.36a 43.48 ± 6.74 44.51 ± 6.8b 44 ± 6.86 0.013
Physical activity (min/week) 87.76 ± 91.01 88.47 ± 96.32 79.71 ± 74.99 86.49 ± 88.21 0.226
BMI (kg/m2) 28.74 ± 4.27 29.08 ± 3.71 29.61 ± 4.35 29.20 ± 4.07 0.150
WHR 0.87 ± 0.07 0.87 ± 0.06 0.86 ± 0.06 0.07 ± 0.87 0.131
SBP (mm Hg) 110.61 ± 10.30 110.61 ± 10.35 110.73 ± 10.36 110.65 ± 10.34 0.389
DBP (mm Hg) 70.66 ± 0.94 70.65 ± 0.87 70.68 ± 0.97 70.66 ± 0.92 0.771
Gender 

(%)
Male 27.5a 36 36.4b 26.4 0.011
Female 19.5a 44.9b 35.6c 73.6

Education (%) Illiterate 20.9 41.9 37.2 5.7 0.908
Under diploma 21.2 41.1 37.7 51.2
Diploma (12 years formal education) 20.9 44.2 34.9 29.3
Upper diploma 24.0 42.2 31.8 13.8

Smoking (%) 23.3 36.7 40.0 10.8 0.396
FBS (mg/dl) Time 13 101.12 ± 8.63 103.38 ± 9.38 106.21 ± 11.16a 104.37 ± 9.99 <0.0001

Time 24 96.73 ± 7.99a 101.81 ± 8.76b 105.08 ± 10.11c 101.72 ± 9.75 0.008
Time 35 90.73 ± 6.44a 104.49 ± 10.47b 130.72 ± 33.50c 110.92 ± 26.51 <0.0001

TG 
(mg/dl)

Time 1 166.63 ± 110.59a 168.84 ± 86.73b 199.63 ± 142.16c 176.21 ± 110.47 <0.0001
Time 2 147.96 ± 73.15a 159.49 ± 82.79b 181.75 ± 89.27c 163.86 ± 63.80 <0.0001
Time 3 153.78 ± 75.53a 166.98 ± 88.13b 208.17 ± 155.36c 178.76 ± 116.81 <0.0001

CHOL (mg/dl) Time 1 202.69 ± 43.19 201.39 ± 40.61 201.70 ± 42.65 201.41 ± 40.96 0.850
Time 2 194.57 ± 29.76 197.95 ± 35.53 199.72 ± 34.45 197.7 ± 33.93 0.057
Time 3 200.73 ± 47.71a 200.75 ± 37.66a 207.41 ± 45.41b 203.11 ± 42.93 <0.0001

HDL (mg/dl) Time 1 45.66 ± 12.54a 45.46 ± 12.05a 43.32 ± 11.53b 44.99 ± 12.18 <0.0001
Time 2 45.66 ± 9.66a 45.13 ± 10.36a 43.66 ± 10.78b 44.79 ± 10.36 <0.0001
Time 3 45.33 ± 10.55a 45.08 ± 11.01a 44.28 ± 12.00b 44.85 ± 11.29 0.01

LDL (mg/dl) Time 1 120.99 ± 36.15 122.73 ± 33.70 124.19 ± 36.49 122.49 ± 35.03 0.163
Time 2 118.24 ± 24.59 121.86 ± 27.07 120.48 ± 27.42 120.53 ± 26.63 0.098
Time 3 117.95 ± 41.71a 119.37 ± 32.44a 122.12 ± 36.78b 120.01 ± 36.19 0.022

BMI: body mass index; DBP: diastolic blood pressure; SBP: systolic blood pressure; WHR: waist to hip ratio, FBS: Fasting blood sugar, triglyceride (TG), total 
cholesterol (TC), low-density lipoprotein (LDL-C), high-density lipoprotein (HDL-C). 

1Values are mean ± SD for continuous and frequency (%) for categorical variables 
2ANOVA test for continuous (post hoc test for pairwise comparisons and different superscript letters indicate statistically significant between groups 

differences) and Chi-squared test for categorical variables, P < 0.05 is considered as significant 
3 Beginning of the follow-up, 4 Mean values during of the follow-up, 5 End of the follow-up

Table 2. Models fitting criteria for different extract classes by latent class growth trees analysis.
Fitted models Number of classes AIC BIC Entropy R-squared Classification error

FBS (mg/dl) Two classes 23,226.40 23,272.41 0.68 0.02
Three classes 22,512.43 22,584 0.63 0.13
Four classes 22,382.11 22,479.25 0.58 0.2

TG (mg/dl) Two classes 32,578.99 32,624.88 0.70 0.05
Three classes 31,954.06 32,025.44 0.69 0.11
Four classes 31,775.49 31,872.38 0.66 0.15

CHOL (mg/dl) Two classes 19,225.14 19,269.95 0.61 0.09
Three classes 19,137.14 19,206.85 0.57 0.17
Four classes 19,106.48 19,201.09 0.57 0.20

HDL (mg/dl) Two classes 16,019.08 16,064.29 0.65 0.09
Three classes 15,930.95 16,001.28 0.60 0.17
Four classes 15,882.91 15,978.36 0.58 0.21

LDL (mg/dl) Two classes 21,447.41 21,492.62 0.63 0.09
Three classes 21,379.92 21,450.25 0.57 0.17
Four classes 21,333.93 21,429.38 0.54 0.27

Akaike Information Criterion (AIC); Bayesian Information Criterion(BIC); CHOL: cholesterol; FBS: fasting blood sugar; HDL: high- 
density lipoprotein; LDL: low-density lipoprotein; TG: triglyceride.
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For individuals in class 1, including 94.8% of parti-
cipants, FBS was persistently slightly abnormal 
throughout 16 years of follow-up. The rate of T2DM 
incidence and remaining prediabetes was 35.9% and 
37.9%, respectively. While in class 2, including people 
with abnormal elevated FBS level, 100% of participants 
progressed to T2DM. Similar patterns of changes were 
observed in extracted latent classes based on TG and 
the incidence of T2DM in class 1 was 35.2% vs. 57.2% 
in class 2 consisted of people with high elevated TG. 
Regarding HDL-C, the rate of remaining prediabetes 
was higher than progress to T2DM in those who were 
classified into class 1 whereas for individuals in class 2 
the T2DM incidence rate was higher. Although rare 
studies evaluated the patterns of changes in blood 
sugar and lipid profile in association with the inci-
dence of T2DM in prediabetic people, many studies 
investigated the risk of development of T2DM in per-
sons who had dyslipidemia in other population such 
as general or pediatrics [10–12,19,20]. Scarce previous 
studies investigated the patterns of changes in lipids 
and glucose indices in prediabetic people using other 
statistical modeling approaches; however, they did not 
evaluate the risk of T2DM in future in these people 
[10,21].

Earlier studies have suggested hypertriglyceride-
mia, low HDL-C, and small particles of LDL-C as 
typical dyslipidemia in insulin resistance. 
Consistently, our findings confirmed the relevance 
of hypertriglyceridemia and low serum levels of 
HDL-C in the development of T2DM [22–25]. On 
the other hand, it seems that a high TG to HDL-C 
ratio is a feature of insulin resistance [25]. This asso-
ciation might be attributed to the role of triglyceride 
and HDL in the metabolism of glucose and insulin 
function. Elevated free fatty acids, as a result of 
increased levels of triglyceride, disrupt the linkage 
of insulin and glucose transporters, impair β-cell 
functions, and induce subclinical inflammation. 
Furthermore, HDL-C may improve insulin secretion 
and sensitivity through its anti-inflammatory proper-
ties, at least for some specific subtypes, and changing 
the intracellular microenvironment (lipids and 
inflammatory cytokines) by reverse cholesterol trans-
port [5,26,27]. Consistently, in a mouse model study, 
Apo lipoprotein (apoA1) knock-out has been asso-
ciated with lower muscle glucose uptake but higher 
serum levels of glucose, triglyceride, and HbA1c [28]. 
However, we failed to find any significant association 
between patterns of change in LDL-C and TC with 
incidence of T2DM. This null association might be, at 
least to some extent, explained by the lack of mea-
surement of the LDL-C particles’ sizes [20]. Indeed, 
the different lifestyles between Iranians and the 
Western population, can be mentioned as one the 
reason for the difference in average of LDL-C parti-
cles’ sizes between two population. For example, Ta
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higher carbohydrate and lower fat consumption by 
Iranians in comparison with the Western might be 
associated with larger LDL-C particles’ sizes and 
therefore make it a weaker culprit of the T2DM 
development in Iranians.

To our knowledge, this is the first study used 
LGCM to identify the association between the pattern 
of changes in serum lipids and FBS and the risk of 
T2DM development during a long duration of follow- 
up in prediabetic people. Other studies have investi-
gated the association of lipid and FBS levels or change 
in their levels over time with the risk of T2DM in 
a different population than in our study or with 
other statistical modeling approaches. The majority 
of previous studies neglected the fluctuations in lipid 
or FBS levels over time in association with the risk of 
affecting by T2DM. Whereas recently, it has been 
shown there is a relationship between lipid indices 
variability and different diseases, suggesting lipid 

fluctuations as an important risk factor for various 
health and clinical outcomes. Our statistical modeling 
approach enabled us to cover comprehensively the 
patterns of fluctuations in lipid indices and FBS for 
classifying our at-risk population into high or low risk 
groups (latent classes) in terms of trajectories of 
change in these variables. Finally, we evaluated the 
rate of progression to T2DM in each identified class. 
This is the unique property of LGCM that could not be 
followed by other statistical methods such as latent 
Markov models [10].

Although our study is the first one examined the 
latent classes of FBS and lipid profile changes in rela-
tion to the incidence rate of T2DM, it has several 
limitations which should be considered when inter-
preting our results. First, our study participants were 
not a representative sample of Iranians and therefore 
the generalizability of our findings might be limited 
only to the first degree relative of people with T2DM. 
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Figure 1. The mean level of FBS and lipid indices over time in identified latent classes using LGCM.
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Second, although the association between LDL-C and 
the risk of prediabetes and T2DM incidence might be 
affected by the size of LDL-C particles, we did not have 
any data to further evaluate this association. Despite 
these limitations, our study includes a large sample 
from different socioeconomic status levels and the 
diagnosis of outcomes was based on laboratory tests 
rather than self-report. In addition, we applied an 
advanced statistical model that classifies prediabetic 
people based on trajectories of lipid indices and FBS 
for identifying high risk groups to predict the risk of 
T2DM development, reliably.

5. Conclusions

In conclusion, the present study demonstrates that 
individuals who have abnormal serum glucose and 
lipid levels over time are more probable to develop 
T2DM in comparison with those who have an 
approximately constant trajectories in these indices. 
Our study specifically showed that among serum lipids 
the persistently elevated TG and low serum levels of 
HDL-C will make individuals more susceptible to 
develop T2DM in future. Our study results by using 
an advanced statistical approach highlighted the 
importance of changes in key risk factors for predict-
ing incidence of T2DM in future and clinicians should 
consider the trajectories of lipid indices and FBS 
instead of focusing on a one-time assessment of theses 
markers. Identification and treatment of prediabetic 
individuals is crucial. Preventing progression of pre-
diabetes to diabetes is possible through lifestyle mod-
ification by adopting healthy diets and sufficient 
physical activity, these approaches can help the body 
weight reduction and normalizing the lipids and gly-
cemic indices as important risk factors and can pre-
vent or delay the onset of T2DM among prediabetic 
high-risk population.
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