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a b s t r a c t

Microalbuminuria (MA) is an independent predictor of cardiovascular and renal disease, development of
overt nephropathy, and cardiovascular mortality in patients with type 2 diabetes. Detecting MA is an
important screening tool to identify people with high risk of cardiovascular and kidney disease. The gold
standard to detect MA is measuring 24-h urine albumin excretion. A new method for MA diagnosis is
presented in this manuscript which uses clinical parameters usually monitored in type 2 diabetic
patients without the need of an additional measurement of urinary albumin. We designed an expert-
based fuzzy MA classifier in which rule induction was performed by particle swarm optimization.
A variety of classifiers was tested. Additionally, multiple logistic regression was used for statistical feature
extraction. The significant features were age, diabetic duration, body mass index and HbA1C (the average
level of blood sugar over the previous 3 months, which is routinely checked every 3 months for diabetic
patients). The resulting classifier was tested on a sample size of 200 patients with type 2 diabetes in
a cross-sectional study. The performance of the proposed classifier was assessed using (repeated)
holdout and 10-fold cross-validation. The minimum sensitivity, specificity, precision and accuracy of the
proposed fuzzy classifier system with feature extraction were 95%, 85%, 84% and 92%, respectively. The
proposed hybrid intelligent system outperformed other tested classifiers and showed “almost perfect
agreement” with the gold standard. This algorithm is a promising new tool for screening MA in type-2
diabetic patients.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Diabetes mellitus is a group of metabolic diseases. A diabetic
patient has high blood sugar, either because not enough insulin is
produced by the pancreas, or because cells do not respond to the
produced insulin [1]. Worldwide, 347 million people had diabetes
in 2011 and by 2030 this number will increase to 552 million.
Diabetes caused 4.6 million deaths in 2011 and is projected to be
the 7th leading cause of death in 2030 according to the WHO.
More than 80% of diabetes deaths occur in low- and middle-
income countries [2]. Type 2 diabetes, the most common form of
diabetes, results from the body's inefficient use of insulin and

causes at least 90% of all cases of diabetes. Diabetic 2 patients have
high risk of a variety of complications, basically because of
complicated and interconnected mechanisms such as hyperglyce-
mia, insulin-resistance, and accelerated atherogenesis. [3]. Life
threatening cardio-cerebrovascular disease such as coronaropathy,
stroke and heart failure are also associated with type 2 diabetes.

Microalbuminuria (MA) is one of the first clinical indicators of
microvascular damage in diabetes [4]. MA is defined as a persis-
tent elevation of albumin in the urine of 430 to o300 mg/d
(420 to o200 mg/min). The acceptable amount of albumin in the
urine is less than 30 mg/d; values above 300 mg/d (200 μg/min)
indicate overt proteinuria (macroalbuminuria). The underlying
association between MA and the development of diabetic compli-
cations has been well established in the literature [5]. In fact, MA is
a well-known predictor of renal disease and consequent progress
of overt diabetic nephropathy in patients with type 2 diabetes
[6,7]. It has also been shown that MA predicts silent myocardial
ischemia, polyvascular diseases, and increased (cardiovascular)
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mortality in type 2 diabetes patients. Considering the high inci-
dence of MA (approximately 40%) in patients with type 2 diabetes
[8] and its significant association with cardiovascular and renal
events, its screening and intervention measures are very important.

Studies have shown that many disorders, such as hyperglyce-
mia, hypertension, and obesity in diabetic patients are associated
with an increased risk of MA [9]. Also, several studies have
revealed that the risk of MA depends on multiple factors, including
age, gender, BMI (body mass index), DD (diabetic duration), BP
(blood pressure), FBS (fasting blood sugar), HbA1c (the average
percentage level of blood glucose over the previous 3 months),
Bs2hpp (2 h post-prandial blood glucose), CHOL (total cholesterol),
LDL (low-density lipoprotein), HDL (high-density lipoprotein), and
TG (triglyceride) [10]. Previous studies on the relationship
between various risk factors and MA have provided controversial
results. In the literature, linear regression methods were usually
used for analyzing the risk factors of MA. They include either
univariate methods (the correction between the factor and the
outcome) or multivariate ones (multiple linear regressions). Uni-
variate methods do not consider the interaction between different
factors. Multivariate techniques, on the other hand, depend on
several assumptions, including the linearity in the underlying
system or the normality of the response variable, assumptions
which are often not valid for real data sets. Many physiological
systems are highly nonlinear [11], so that linear analysis is
inappropriate. Advanced data-mining methods, on the other hand,
can be used to extract high-level information from complex
biological systems without such troublesome pre-assumptions.

MA can be diagnosed by 24-h urine collection (gold standard).
However, more convenient detection methods have been pro-
posed in the literature [12]. The present study investigates
whether it is possible to use advanced classification methods to
indicate the occurrence of MA based solely on the routine screen-
ing in diabetic patients [13], without a separate urinary albumin
concentration measurement test. Considering the rather high
prevalence of chronic kidney disease in diabetic patients in Iran
(14%–26%) [14], this will facilitate MA diagnosis, thus preventing
later kidney complications. Moreover, this study could reveal
which are the most significant factors for predicting MA, thus
simplifying the diagnostic procedure.

The rest of the paper is organized as follows: in the next
section, information about the subjects and the classification
methods used in this study is presented. Section 3 provides the
results of the classification methods and assesses their perfor-
mance. Statistical feature selection is used to exclude irrelevant
features. Finally, the conclusions are summarized in Section 4.

2. Materials and methods

2.1. Patients

Participants attended screening visits and a follow-up visit at
the Endocrine and Metabolism Research Center, Isfahan University
of Medical Sciences, where they underwent standardized inter-
views, physical assessment, and laboratory testing. We studied all
the diabetic 2 patients who attended the above-mentioned center
in 2012 whose clinical information was complete. The data were
collected by trained technicians. The duration of diabetes was
determined by subtracting the age at diabetes diagnosis from the
current age. MA was defined as urinary albumin between 30 and
300 mg/day. Lipid profile (HDL, LDL, TG and CHOL) was measured
after a 10- to 12-h fast. Our study was performed on 200 patients
(130 males and 70 females) with type 2 (insulin-Independent)
diabetes mellitus. All patients received conventional treatment.
Also semiannual determinations of HbA1c, Bs2hpp, BP, BMI, and

FBS values were recorded for participants. All subjects gave
informed consent to the experimental procedure. The experimen-
tal protocol was approved by the Isfahan University of Medical
Sciences Panel on Medical Human Subjects and conformed to the
Declaration of Helsinki.

2.2. Statistical analysis

All statistical analyses and calculations were performed using the
SPSS statistical package, version 18.0 (SPSS Inc., Chicago, IL, USA).
Descriptive analyses were used to characterize the participants by
socio-demographic and clinical factors. Continuous data were pre-
sented as mean7SD and as proportions for categorical variables.
Prevalence of MA was expressed as percentages. A two-sided
P-value of o0.05 was considered statistically significant. Finally,
classification was performed using Matlab and Statistics Toolbox
Release 2011a (The MathWorks, Inc., Natick, Massachusetts, USA).

2.3. Classification methods

The following input features were used in this study: Age,
Gender, BMI, DD, systolic BP, FBS, HbA1c, Bs2hpp, CHOL, LDL, HDL,
and TG. BP was then converted to a nominal variable indicating
the occurrence of hypertension. This was done because BP has
been usually used to indicate hypertension as a risk factor in the
literature. Two nominal variables (gender, BP) received special
treatment when necessary. The outcome was classified as Nor-
moalbuminuria (urinary albumin less than 30 mg/day) or MA
(urinary albumin between 30 and 300 mg/day).

Machine learning methods applied to a variety of medical
domains can be classified into the following major groups
[15,16]: inductive learning of symbolic/qualitative rules (such as
decision trees and neuro-fuzzy classifiers), statistical or pattern-
recognition methods (discriminate analysis, Bayesian classifiers,
support vector machines), and artificial neural networks. Among
multivariate methods, linear and quadratic discriminant analysis
(LDA and QDA), support vector machine (SVM), naïve Bayesian
classifier (NBC), bagged decision trees (BDT), and adaptive neuro-
fuzzy interference system (ANFIS) were chosen [16–18]. Also, we
proposed an expert-based type-1 Mamdani fuzzy inference sys-
tem, in which the rule fusion was performed using discrete
particle swarm optimization (D-PSO). A statistical feature selection
(FS) was also used to reduce the feature space. Its effect on the
examined classifiers was studied. In the next section, the classifi-
cation methods used in this study are introduced.

2.3.1. The proposed hybrid intelligent system (HIS)
Fuzzy classifiers (FCs) have been widely used in computer-

aided diagnosis systems [19,20]. FCs assume an overlapping
boundary between neighboring classes which is practical in many
applications, providing a simple representation of the complex
feature space.

Briefly, fuzzy if-then rules in a two-class classifier FIS are
defined as follows:

if x1 is A
j
1 and x2 is A

j
2 and … and xn is A

j
n then y is ωi; i¼ 1; 2 ðwjÞ

ð1Þ

where, Aj
i and wj are the ith input linguistic term and the weight

(importance) of the rule index j (j¼1,…, m), and [x1,…,xn] is the
feature vector (the clinical recordings for a subject) that is
classified to class ωi. Similarly, it is possible to change the rule
consequent to a probability in which the input data belongs to one
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of the underlying classes:

if x1 is A
j
1 and x2 is A

j
2 and … and xn is A

j
n then Probðω1jyÞ is Bj ðwjÞ

ð2Þ

where, Bj is the output linguistic term of the rule index j (j¼1,…,
m). Setting a probability threshold (e.g. 50%), it is possible to
identify the output class as: class is ω1 if the total output
probability of the fuzzy system is not less than 50%. In our
problem, ω1 is the MA class. This structure is mostly suited with
the Mamdani FIS, in which the output linguistic term is used
instead of linear combination of rule antecedent. In the designed
FIS, AND, and OR methods were the minimum and maximum. The
implication and aggregation were the minimum and maximum,
respectively. Finally, the centroid de-fuzzification was used as the
output stage.

In the proposed FC, the membership functions of the input/
output linguistic terms of all the parameters except gender and BP
were initially designed by the experts. Since gender and BP are
binary values, the unit step function was used as the corresponding
MF. Spline-based Z-shaped and S-shaped were used for extreme low
and high MFs and Gaussian was used elsewhere. The experts took
into account the range of the normal/abnormal input parameters in
the clinical literature and defined as many as input MF as necessary.
For example, for the LDL, four MFs entitled as “Normal”, “Borderline”,
“High” and “Very High” were designed. Also, three MFs “Normal”,
“Overweight” and “Obese” were designed for the BMI. Five levels of
output probability “Low”, “Medium Low”, “Medium”, “MediumHigh”
and “High”, were designed for the output linguistic terms. The
outline of the MFs for the input/output parameters is shown in the
“Figs. S1 and S2, Supplementary materials”.

The other required parts of the FIS are the fuzzy rules. Choosing
an appropriate number of rules is very important for the overall
performance and generalization capability of a fuzzy system. There
are different rule induction methodologies in the literature, mainly
as systematic method [21], and heuristic approach [22–24]. The
former category suffers from an exponential increase of number of
rules (grid partitioning), the high impact of the clustering radius
(subtractive clustering) and the problem of estimating the optimal
number of clusters (FCM). These are the reasons that the optimal
(compact) representation of the fuzzy rules is not feasible based
on the first methodology. The latter category includes neural fuzzy
and evolutionary fuzzy systems (such as evolutionary program-
ming (EP), genetic algorithm (GA)) and swarm intelligence (ant-
colony optimization (ACO), particle swarm optimization (PSO)).
Using these heuristics, it is possible to find the optimal number of
fuzzy rules and compact representation of the rule's antecedent. In
the meanwhile, we used simultaneous rule learning to design our
proposed FC approach, in which interaction of the fuzzy rules is
required during their generation at the expense of increased
computational complexity [22].

PSO, a promising new optimization technique, was used
for inductive rule learning. Unlike evolutionary algorithms, the
particle swarm does not use selection; the interactions of the

whole population from the beginning result in iterative improve-
ment [25]. PSO is a meta-heuristic population-based stochastic
optimization algorithm, originally proposed to simulate the social
behavior of a flock of birds [26]. PSO has been successfully applied
to a wide range of optimization problems [27–29]. PSO is briefly
discussed at the next section and is embedded into the FIS to find
the optimum number and structure of the rules.

2.3.2. Particle swarm optimization (PSO)
In PSO, each “particle” is a candidate solution flying through

the search space, whose position (x) and velocity (v) are iteratively
updated in each dimension using the following formula [30]:

vðtþ1Þ ¼ωvðtÞþc1r1ðpðtÞ�xðtÞÞþc2r2ðgðtÞ�xðtÞÞ
xðtþ1Þ ¼ xðtÞþvðtþ1Þ; vð1Þ � Uð0;1Þ

(
ð3Þ

where t is the time step (iteration number), p(t) is the personal
best solution of the particle, g(t) is the best position found by the
neighborhood of particle, with the coefficient ω being the inertia
weight, c1 and c2 the cognitive and social acceleration coefficients
respectively and finally r1, r2�U(0,1). In our work, the neighbor-
hood of each particle was the entire swarm (star topology) [26].
The following modifications were made to the original PSO to
ensure acceptable performance and avoid premature convergence:

� Velocity clamping was used to prevent explosion, thereby
avoiding premature convergence [22]. Positions of the particles
were also clamped to surf the finite search space.

� Randomized PSO (RPSO) was used to improve the chances of
finding the global optimum [31]. Every 40 iterations, the
positions of 40% of the particles were re-initialized.

� The inertia weight (ω), was initially set to 0.9 (at t¼1), and was
then linearly decreased to 0.5 (at t¼max_iter) [32]. A large
value of inertia weight favors global search (“exploration”),
while a small value favors local search (“exploitation”).

� Following the Multi-start PSO (MPSO) strategy [31], PSO was
run five times. The global best particle found in each run was
used as a candidate particle at the next run.

The other PSO parameters were set as follow: c1¼c2¼1.49618
[33], and max_iter¼1000. The termination criterion was only
based on the number of iterations.

2.3.3. Using PSO for inductive rule learning
The coding structure of a fuzzy rule is shown in Table 1. Each rule

is represented by 12 discrete input MF index, a discrete output MF
index, each of which has different range defined by the experts (Figs.
S1 and S2, Supplementary material), a continuous fuzzy rule weight
(importance) within [0,1], and finally a natural number with the value
of 1 or 2, indicating the fuzzy operator for the rule's antecedent.
Following the above rule coding, the interpretation of the rule code
[�1, 0, 2, 3, 2, 0, 3, 0, 2, 1, 0, 0, 4, 0.75, 1] will be as follow:

IF the AGE is NOT “middle age”, AND BMI is “overweight”, AND
DD is “very high”, AND BP is “hypertension”, AND HbA1c is

Table 1
The coding of a fuzzy rule based on the input and output MF index, the fuzzy weight and the fuzzy operator index including the range of the features.

Rule
structure

Discrete MF indexa Continuous importance
impact

Discreet antecedent
index

Age Gender BMI DD BP FBS HbA1c CHOL Bs2hpp LDL HDL TG ProbMA Rule weight Fuzzy operatorb

Range [�3,3] [0,2] [�3,3] [�3,3] [0,2] [�3,3] [�3,3] [�3,3] [�3,3] [�4,4] [�3,3] [�4,4] [1,5] [0,1] {1,2}

a The absolute values are the index of the MF (starting 1 for the leftmost MF; refer to supplementary material: part A for the structure of each input/output MF). The
negative number implies the linguistic operator “not”. The value of zero means that the corresponding feature does not exist in the rule. For the gender MF, “male” and
“female” are represented by 1 and 2, respectively. The values of 1 and 2 for the BP MF, implies normal blood pressure and hypertension, respectively.

b The fuzzy operator for the rule's antecedent is “AND” and “OR” for the fuzzy operator values of 1 and 2, respectively.
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“diabetes”, AND Bs2hpp is “impaired glucose tolerance”, AND
LDL is “normal” THEN ProbMA is MH (Medium high); (rule
weight¼0.75).

The condition in which all of the input MF's code are 0 (no rule
antecedent), was avoided. For more than one rule, their codes were
concatenated in serial, to have the number of rules’ parameters of
15*n_rule, where n_rule is the maximum number of possible rules.
It was not necessary to run the algorithm for different rule number;
instead the weight of the unnecessary rules will automatically tend
to zero during the optimization procedure. The high number of
rules will increase the complexity of the problem; thus increases
the chance premature convergence, so n_rule parameter was
initially set to 10. We have found that this number gives a good
balance between under-fitting and over-fitting.

Accordingly, each particle had the dimension of (D¼15*n_rule).
The number of particles was (n_particles¼round(10þ2*D0.5)) [34].
The objective function was set to the accuracy of the FC on the
whole training set. The initial rules of the PSO, for the first run,
were defined by experts according to the qualitative rules taken
from the literature. When the rule induction finished, the rules
whose weights were less than 0.01, were excluded from the FIS
rule list. The resulting FC is referred to as the “hybrid intelligent
system” (HIS) throughout this manuscript. The Matlab code of the
proposed PSO-based inductive rule learning system is available
upon request.

2.3.4. Other tested classifiers
2.3.4.1. Linear and quadratic discriminant analysis (LDA, QDA)
. Discriminant analysis has been widely used in medical diagnostic
systems [35]. LDA and QDA are two popular examples. In LDA, it is
assumed that the patterns in each class are multivariate normally
distributed with different means and identical covariance matrices. In
QDA, the covariance matrices are assumed to be group-specific. LDA is
robust against deviations from the multivariate normality assumption
[36]. QDA is more flexible than LDA, because it has quadratic decision
boundaries which produce elliptical, hyperbolic, parabolic or linear
class boundaries; see [37] for details. Thus, a variety of patterns can be
identified by QDA.

2.3.4.2. Support vector machine (SVM). The main concept of SVMs,
which were originally developed for binary classification problems
[38], is to use hyperplanes to separate data points of different
classes[37]. In our study, the linear and radial basis function (RBF)
kernels were used. The soft-margin parameter and the radius of
the RBF kernel should be set properly, because inappropriate
parameter settings end up with poor classification results. The
method proposed by Wu and Wang [39] was used to set the
tunable parameters. In the meanwhile, sequential minimal
optimization (SMO) [40] was used to train the SVM classifier.
SMO breaks the large QP SVM problem into a series of smallest
possible QP problems, which are then solved analytically [40].

2.3.4.3. Naïve Bayesian classifier (NBC). Bayesian networks are
examples of Bayesian statistical learning algorithms, and NBC is one
of the simplest forms of these networks. Although it is simple and
makes the (strong) assumption of class-conditional independence,
NBC training is fast and it is tolerant to noisy and incomplete data [16].
NBC often performs quite well even if its assumption is violated. In
our study, a Gaussian kernel function with an adaptive bandwidth
parameter was used [41]. The Laplacian correction was used to avoid
the case of probability values of zero.

2.3.4.4. Bagged decision trees (BDT). Decision trees (DT) have been
widely used in medical (diagnosis) systems [42], since they are
easy to understand and interpret,, allow the use of both

continuous and nominal data,, are fast and are able to process
large datasets [42]. However, it is difficult to design the optimal
tree. The performance of the DT was improved by using a
bagging (bootstrap aggregation for ensemble of DT) technique
which involved combining the various outputs of learned DT on
a bootstrapped training set into a single prediction [43]. The BDT
returns the class that has been predicted most often (voting). In
our study, BDT was implemented by a post-pruned ensemble of DT
[43] using the normalized gain ratio criterion for feature selection
in Quinlan's C4.5 DT induction algorithm [44]. Test set examples
were then classified by a simple majority vote of the ensemble DT
and ties were broken randomly.

2.3.4.5. Adaptive neuro-fuzzy interference system (ANFIS). ANFIS is
an adaptive network that learns the rules and membership
functions (MF's) from the data. It integrates the best features of
fuzzy systems and neural networks [45]. The system learns the
relationship between the inputs and output via a first-order Takagi
Sugeno Kang (TSK) fuzzy inference system (FIS), where the fuzzy
conclusion is the weighted linear combination of the inputs.
Although the FIS output is usually continuous, it is possible to
integrate it with the diagnosis systems via the diagnosis likelihood
ratio [46]. In our study, the FIS output was set to the probability of
having MA ranging from 0 to 1, and the cutoff value of 0.5 was
used for MA diagnosis. The initial FIS was estimated using fuzzy
C-means (FCM) from the input/output training data set. The
number of clusters was estimated by the fuzzy extension of the
silhouette criterion to eliminate the problem of unnecessary rules
and tunable parameters [47]. The AND, and OR methods were the
product and the probabilistic OR (algebraic sum). The implication
and aggregation were the minimum and maximum, respectively.
Finally, the de-fuzzification operator was weighted averaging.

2.4. Classifiers with statistical feature selection (FS)

In many classification problems, numerous candidate features are
used for domain representation. Often many of these are irrelevant or
redundant [48]. Thus, feature selection (FS) is used to detect relevant
features leading to an increase in classifier accuracy.

To reduce the complexity of the examined classifiers as well as
the proposed HIS system, multiple logistic regression (MLR),
a statistical FS method, was used. Much has been written in the
literature about the relative merits of MLR versus multiple linear
regression [49,50]. MLR has been extensively used to identify
relevant risk factors in epidemiological studies in which the
outcome variable is categorical [51]. MLR, known as feature vector
machine in machine learning, can be used to select statistically
significant features [52–54]. After running MLR on the input
features (excluding the intercept point in the analysis), the
selected features were used in the tested classifiers. The resulting
methods were called FS-LDA, etc.

2.5. Validation

The performance of the considered classifiers was assessed
using the holdout method, an approach to out-of-sample evalua-
tion, in which the dataset was split into two equal-size mutually

Table 2
The reported performance measures.

Sensitivity (Se)¼TP/(TPþFN) Specificity (Sp)¼TN/(TNþFP)
Accuracy (Acc)¼(TPþTN)/(TPþTNþFNþFP) Precision (Pr)¼TP/(TPþFP)
Recall (RL)¼Power¼Se F1-score¼2�Pr�RL/(PrþRL)
False alarm¼1-Sp¼False positive rate¼α (Type I error)
β¼1-Se¼False negative rate (Type II error)
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exclusive sets (datasets 1 and 2). The classifiers were then trained
on dataset 1 and tested on dataset 2 and vice versa [55,56].
Additionally, the repeated holdout estimate as well as 10-fold
cross-validation were used to assess the performance of the best
classifier in order to overcome a possible pessimistically biased
error estimate [55]. The performance measures of the classifiers
are listed in Table 2, along with their definitions. Of the measures,
Sensitivity (Se), Specificity (Sp), Accuracy (Acc), and Precision (PR)
are reported, while the other indices can be obtained as in Table 2.
The performance indices taken into account cover most of the
indices used in information theory and epidemiological studies
[57,58]. Additionally, to determine whether one classifier out-
performed another on the test set, McNemar's (Gillick) statistical
test was used [55,59].

3. Results

The average age of the participants was 5879 years, with the
average duration of diabetes being 1075 years. 65% were males.
Fifty percent were hypertensive, and the prevalence of MA was
44%. The average BMI was 28.274.3 kg/m2, and 30% were obese.
The socio-demographic and health characteristics of the partici-
pants, grouped by their classification as MA and Normo-
albuminuria (NA), are depicted in Table 3.

The performance of the selected classifiers as assessed using
the holdout method is shown in Table 4. Table 4 has two separate

parts: the left part is related to the performance of the classifiers
on dataset 2 after tuning (training) on dataset 1, while in the right
part, classifiers were trained on dataset 2 and validated on dataset
1. The overall holdout accuracy is shown in the “OAcc” column of
Table 4. Additionally, the results of McNemar's test for pairwise
comparison of the different classifiers listed in Table 4 also shown
(Table S1, Supplementary materials). “NBC” and “SVM-linear”
outperformed the other classifiers except for “ANFIS” and “HIS”.
In other words, no classifiers outperformed “HIS” and “ANFIS”
among the classifiers tested (Table S1).

Next, MLR was used for statistical feature extraction. The
intercept point (bias) was not used in the model, and the significant
features (p-value o0.05) were selected. The features selected by
MLR as being effective were “BMI”, “AGE”, “HbA1C” and “DD”. The
performance of the selected classifiers with feature selection (FS) is
shown in Table 5 using the holdout method. Additionally, the
results of McNemar's test for pairwise comparison of the different
classifiers listed in Table 5 are also shown (Table S2, Supplementary
materials). The overall accuracy of “FS-HIS” was 95%. “FS-HIS”
outperformed the other classifiers while “FS-NBC” and “FS-SVM
linear” received the 2nd and 3rd ranks (Table S2).

Four fuzzy rules inducted by PSO (when trained on dataset 1) in
the FS-HIS method are shown in Table 6. The weights of the
induced Fuzzy rules are also shown. Rule #4 was the most
important rule (w4¼0.92) while the 3rd rule was the least
important one (w3¼0.04). The value of the objective function
(the accuracy of training on dataset 1) and the dataset 2 accuracy
of the FS-HIS (when training on dataset 1) at some iterations
(the 2nd PSO run), are shown in Fig. 1. The discrete nature of the
improvement of the objective function was because of using 1the
discrete-PSO algorithm. Additionally, the FIS system created by
the FS-HIS (when trained on dataset 1) is shown (Fig. S3,
Supplementary materials).

The performance of “FS-HIS” was further assessed using the
repeated holdout (Nr¼20) and 10-fold cross-validation (Table 7).
The average holdout accuracy “OAcc” for 20 repetitions and the
average test-set accuracy indices (for 10 cross-checking repetitions)
are shown (Table 7). In the worst case, the sensitivity and specificity
of the FS-HIS were 94.7% and 85.1%, respectively. Moreover, the
average accuracy obtained for repeated holdout and 10-fold cross-
validation were 94.4% and 94.2%, respectively, showing that the
accuracy of FS-HIS reported in Table 5 is not dependent on the
specific training set/test set used in the algorithm. The high values of
average precision (in addition to the low values of SD precision),
reported in Table 7, revealed the good repeatability of the
FS-HIS algorithm. Also, the inter-rater agreement between the gold

Table 3
Comparison of clinical and biochemical features of all the included subjects with
normo- and microalbuminuria.a

Groups Normoalbuminuria
(n¼113)

Microalbuminuria
(n¼87)

Age (year) 6576 (51–58) 5276 (32–63)
Percentage women (%) 39 30
BMI (kg/m2) 28.874.8 (18.1–40.5) 27.573.6 (20.3–39.8)
Hypertension (%) 53.6 46.4
Triglyceride (mmol/l) 158761 (48–332) 157773 (35–546)
HDL cholesterol (mmol/l) 52712 (27–76) 46710 (25–72)
LDL cholesterol (mmol/l) 108728 (41–194) 100722 (48–180)
Total cholesterol (mmol/l) 191734 (124–287) 178725 (108–263)
Fasting blood sugar (pmol/l) 145741 (75–273) 15476 (64–427)
HbA1C (%) 771 (4.6711.4) 872 (4.6–11.2)
Bs2hpp (mg/dl) 220761 (93–410) 235771 (80–446)
Diabetic duration (year) 1075 (5–25) 1074 (5–21)

a Values are mean7S.D (range); BMI, body mass index; BP, blood pressure.

Table 4
The holdout performance estimate (%) of the selected classifiers.

Strategy Tuning on the dataset 1 Tuning on the dataset 2 OAcc

Datasets Dataset 1 Dataset 2 Dataset 1 Dataset 2

Index classifier Se Sp Pr Acc Se Sp Pr Acc Se Sp Pr Acc Se Sp Pr Acc

LDA 94 84 85 89 66 94 92 80 90 80 82 85 98 100 100 99 83
QDA 88 94 94 91 68 88 85 78 80 64 69 72 98 96 96 97 75
SVM Linear 94 84 85 89 68 96 94 82 92 80 82 86 100 100 100 100 84
SVM Rbf 100 100 100 100 74 80 79 77 100 42 63 71 100 100 100 100 74
NBC 94 90 90 92 76 92 90 84 90 82 83 86 98 100 100 99 85
BDT 82 100 100 91 80 100 100 90 40 84 71 62 62 96 94 79 76
ANFIS 98 94 94 96 68 96 94 82 82 74 76 78 98 100 100 99 80
HIS 80 76 77 78 82 72 75 77 84 90 89 87 80 96 95 88 82

Se: Sensitivity (%), Sp: Specificity (%), Pr: Precision (%), Acc: Accuracy (%), OAcc: The overall percentage accuracy (the average of the Acc of the classifier on the dataset
2 where it was tuned on the dataset 1 and vice versa); The classifiers: LDA and QDA (linear/quadratic discriminant analysis), SVM linear and Rbf (supported vector machines
with linear/Rbf kernel), NBC (naïve Bayesian classifier with an adaptive Gaussian Kernel density estimator), BDT (bagged decision trees), ANFIS (adaptive neuro fuzzy
inference system), and HIS (the proposed hybrid intelligent system).
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standard and the results of FS-HIS was “almost perfect agreement”
(min. Cohen's kappa coefficient¼0.91) [60].

4. Discussion

MA is a predictor of end-stage renal failure and death in
patients with type 1 diabetes and a marker of increased mortality
from cardiovascular disease for type 2 diabetes [5]. In population-
based studies, the prevalence of microalbuminuria ranged from
12.3% to 27.2% and from 19.4% to 42.1% among those with type
1 and 2 diabetes, respectively [13]. Accordingly, it is recommended
by the American diabetes association (ADA) that MA clinical tests
must be scheduled annually for diabetic patients [61]. Additionally,
the diabetes care schedule includes a HbA1C test every three
months, and checking lipid profiles annually. By using the

proposed MA classification system it will be possible to accurately
identify the occurrence of MA based on “BMI”, “AGE”, “DD” and
“HbA1C”. Thus, MA screening can now be performed every three
months when the HbA1C test is performed. This will make it
possible to identify at-risk patients earlier and to send them for
further clinical tests to prevent further MA damage.

According to the ADA, the gold standard for measuring urine
albumin excretion (UAE) is a 24-h urine collection [62], as used in
our study. However, a more convenient method to detect MA is
the albumin (mg)/creatinine (mg) ratio (ACR) measured in a
random urine specimen [63]. The ADA and the National Kidney
Foundation (NKF) define microalbuminuria as an ACR between 30
and 300 mg/mg in both genders. However, it was shown that these
cut-points are sex- and race-specific [62]. The sensitivity and
specificity of the ACR were estimated as 73% and 96% in a recent
study [12]. The sensitivity and specificity of the proposed FS-HIS

Table 5
The holdout performance estimate (%) of the selected classifiers incorporating statistical feature selection (FS) based on multiple logistic regression (MLR).

Strategy Tuning on the dataset 1 Tuning on the dataset 2 OAcc

Datasets Dataset 1 Dataset 2 Dataset 1 Dataset 2

Index classifier Se Sp Pr Acc Se Sp Pr Acc Se Sp Pr Acc Se Sp Pr Acc

FS-LDA 92 82 84 87 62 96 94 79 94 88 89 91 98 100 100 99 85
FS-QDA 88 80 81 84 70 96 95 83 94 60 70 77 100 94 94 97 80
FS-SVM Linear 92 90 90 91 78 96 95 87 94 72 77 83 100 94 94 97 85
FS-SVM Rbf 96 96 96 96 70 94 92 82 92 62 71 77 100 100 100 100 80
FS-NBC 96 84 86 90 84 98 98 91 94 84 85 89 100 96 96 98 90
FS-BDT 96 86 87 91 100 94 94 97 34 76 59 55 60 76 71 68 76
FS-ANFIS 98 92 92 95 82 92 91 87 94 74 78 84 100 98 98 99 86
FS-HIS 94 90 90 92 100 96 96 98 94 90 90 92 100 100 100 100 95

Se: Sensitivity (%), Sp: Specificity (%), Pr: Precision (%), Acc: Accuracy (%), OAcc: The overall percentage accuracy (the average of the Acc of the classifier on the dataset
2 where it was tuned on the dataset 1 and vice versa); statistical feature selection (FS) was used prior to using the following classifiers: LDA and QDA (linear/quadratic
discriminant analysis), SVM linear and Rbf (supported vector machines with linear/Rbf kernel), NBC (naïve Bayesian classifier with an adaptive Gaussian Kernel density
estimator), BDT (bagged decision trees), ANFIS (adaptive neuro fuzzy inference system), and HIS (the proposed hybrid intelligent system).

Table 6
Fuzzy rules inducted by PSO in FS-HIS method.

Rule index Inducted rule Rule weight

1 If (AGE is Old) and (Hb1AC is Diabetes) then (ProbMA is Medium) 0.53529
2 If (AGE is Older) then (ProbMA is ML) 0.55594
3 If (BMI is Normal) or (AGE is Old) or (Hb1AC is Diabetes) or (DD is High) then (ProbMA is High) 0.040845
4 If (BMI is Normal) and (AGE is older) and (Hb1AC is Normal) and (DD is Medium) then (ProbMA is ML) 0.91870

Fig. 1. The value of the objective function (the accuracy of the proposed classifier on the training set-solid line) and the accuracy on the test set (dotted line) in the second
PSO run at some iteration.
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method are estimated as 99% and 90% (Table 7), showing compar-
able results. Also, considering the maximum type I (α¼0.10) and II
errors (β¼0.06) of FS-HIS (Tables 2, 5 and 7), guarding against
testing hypotheses suggested by the data (type III errors [64])
done by cross-validation (Table 7), and finally the “almost perfect
agreement” between the gold standard and FS-HIS results in the
worst case, the proposed method is promising for clinical diag-
nostic tests.

A meta-regression analysis of 22 studies (410,000 cases) of
diabetes has been recently performed [10]. The authors found out
that FBS, HbA1C, BP, age, gender, DD, HDL and smoking are
significant risk factors of MA. MLR revealed the effect of HbA1C,
age, DD and BMI on MA in our study. Thus, there were disagree-
ments on FBS, BP, gender, HDL and BMI. However, there have been
several studies in the literature with controversial results on the
above factors [5,10]. The difference could be due to two main
limitations of our study: the relatively small sample size (¼200
people), and the cross-sectional nature of our study. A larger sample
size is needed for detailed investigations, and a cohort study is
preferred to follow diabetes patients in a longitudinal study. The
above limitations exit in several studies in the literature [10].

In our MA patients, BMI was correlated with BP. Also, BP was
also correlated with age. Since MLR takes into account the inter-
effects between input parameters, this could be a possible expla-
nation for why BMI was selected for our model while BP was not.
HbA1C was highly correlated with FBS and Bs2hpp. Thus, HbA1C
could predict FBS fluctuations, and was used in our model instead.
HDL was correlated with age and TG (inversely). This might be
a reason that age was selected in our model while HDL was not.
Also, there existed correlations in our control subjects (Normo-
albuminuria). For example, negative correlation between BP and
BMI, strong correlation between HbA1C, FBS and Bs2hpp, and
negative correlation between age and HDL. These correlations
violated the class-conditional independence condition in NBC.
However, this shows the robustness of the NBC algorithm since
it had acceptable performance on the dataset (Tables 4 and 5). The
normality condition was rejected for the age and DD variables.
This could justify the marginal performance for QDA and the
somewhat better performance for LDA; thus showing the robust-
ness of LDA in comparison with QDA.

Statistical FS used in our study improved the performance of all of
the classifiers tested (Tables 4 and 5). Instead of statistical FS, other
methodologies such as optimal (e.g. branch and bound procedure), or
sub-optimal searches (e.g. sequential forward/backward selection)
could have been used [65]. Using these methodologies, different
feature sets with acceptable accuracy and better physiological/
clinical/practical interpretations could be introduced. For example,

hypertension is the most significant contributing factor in the
development of diabetic nephropathy (and is an MA risk factor) in
type 2 diabetic patients [10,66]. BP has to be checked at every visit of
a diabetic patient according to the diabetic care schedule recom-
mended by the ADA [13]. On the other hand, calculation of DD
requires accurate diabetes onset detection. Diabetes diagnostic
criteria have been well defined [67–69]. However, no major organi-
zation recommends universal screening for diabetes. The World
Health Organization (WHO) recommends only testing high-risk
groups [70]. Thus, accurate onset detection of diabetes is not always
feasible. Thus, it might be preferable to use hypertension instead of
DD as a diagnostic criterion. It might be possible to use BP instead of
DD, since DD was correlated with BP and BMI in the MA and control
groups of our database. DD was also correlated with age in the MA
group. A modified FS-HIS system using these criteria was trained
using methods similar to those in Table 5. The resulting inducted
fuzzy rules and the performance of this modified FS-HIS are listed
(Table S3 and S4, Supplementary materials). The overall performance
of this FIS system was 99%, which is quite promising.

FIS has provided a basis for representing imprecise knowledge and
has formed a basis for human reasoning representation in medical
applications [71]. A fuzzy classifier can be a convenient tool in the
process of medical diagnosis [72]. An interpretable FIS solution is
expressed in linguistic terms and should use few rules and original
input variables [72]. The fuzzy rules inducted by PSO in the (modified)
FS-HIS (Tables 6 and S3), aremore interpretable than the accurate crisp
classifiers used in our study. The (FS-) BDTclassifier, on the other hand,
is readable by clinicians because of the cut-off points, but it did not
show acceptable performance (Tables 4 and 5). The interpretability of
the FS-HIS could be improved by using Niching PSO [34], in which
multiple global/local optima (sets of fuzzy rules) are located. Different
sets of fuzzy rules, whose accuracies are acceptable, could be verified
by clinicians to choose the most interpretable FIS. Also, the overall
accuracy of FS-HIS, could be improved by further PSO-based tuning of
the parameters of MF's used in the rules after fixing the fuzzy rule
structures.

We proposed a new FS-HIS to identify MA without having to
measure urinary albumin concentration. This method is accurate and
precise and could be possibly used to identify MA in patients with type
2 diabetes. In the future, we will focus on the improvements of FS,
fuzzy rule induction and clinical interpretation. A longitudinal MA
database including more samples will be analyzed to increase the
generalization capability of the developed HIS. Also, the prevalence of
commonly examined demographics (gender and age) in a case/control
groups will be considered to derive statements independent on the
above-mentioned factors, if possible.

5. Summary

Microalbuminuria (MA) is an independent predictor of cardio-
vascular and renal disease in patients with type 2 diabetes. Detect-
ing MA is an important screening tool to identify people with high
risk of cardiovascular and kidney disease. The gold standard to
detect MA is measuring 24-h urine albumin excretion. However,
there exist more convenient, but less accurate, clinical tests such as
random urine specimen albumin/creatinine ratio measurement.
This manuscript presents a new method for MA diagnosis that uses
clinical parameters usually monitored in type 2 diabetic patients
without the need for additional measurements of urinary albumin.
We designed an expert-based fuzzy MA classifier in which rule
induction was performed by particle swarm optimization. A variety
of other classifiers (linear and quadratic discriminate analysis,
support vector machine, naïve Bayesian classifier, and adaptive
neuro-fuzzy inference system) were also tested. Additionally, multi-
ple logistic regression was used for statistical feature extraction,

Table 7
The performance of the FS-HIS based on the repeated holdout (Nr¼20) and 10-fold
cross-validation (mean7SD) [min,max].

Performance index test Sensitivity Specificity Precision Accuracy

Repeated holdout (Nr¼20)a 99.270.8 89.772.1 90.672.2 94.471.2
[98.2,100] [85.1,92.3] [83.9,93.0] [91.6,96.0]

10-Fold cross-validationb 98.771.9 89.872.6 90.272.1 94.271.0
[94.7,100] [86.8,93.6] [86.1,92.7] [93.3,95.1]

a Each performance index was calculated as the average of the indices on the
test set (when the classifier was tuned on the training set) and the indices on the
training set (when the classifier was tuned on the test set). The training and test
sets were randomly selected and the average of the performance indices were then
reported over (Nr¼20) repetitions.

b The database was randomly partitioned into 10 equal size subsamples. Of the
10 subsamples, a single subsample is retained as the test set, and the remaining
9 subsamples were used as training set. The cross-validation process is then
repeated 10 times, with each of which was used exactly once as the test set. The
average of the performance indices on resulting 10 test sets, were then reported.

H.R. Marateb et al. / Computers in Biology and Medicine 45 (2014) 34–4240



improving the performance of all of the classifiers tested. The
significant features were age, diabetic duration, body mass index
and HbA1C (the average level of blood sugar over the previous
3 months, which is routinely checked every 3 months for diabetic
patients). The resulting classifier was tested on a sample size of 200
patients with type 2 diabetes in a cross-sectional study. The
performance of the proposed classifier was assessed using
(repeated) holdout and 10-fold cross-validation. The minimum
sensitivity, specificity, precision and accuracy of the proposed fuzzy
classifier system with feature extraction were 95%, 85%, 84% and
92%, respectively. The proposed hybrid intelligent system outper-
formed other the tested classifiers and showed “almost perfect
agreement” with the gold standard (min. Cohen's kappa
coefficient¼0.91). This algorithm is a promising new tool for
screening MA in type-2 diabetic patients. It provides a basis for
representing imprecise knowledge and forms a basis for human
reasoning representation. The proposed interpretable fuzzy classi-
fier, expressed in linguistic terms, with few rules and input vari-
ables, can be a convenient tool in the process of MA diagnosis.
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